Efecto del solvente y de la relación masa/solvente, sobre la extracción de compuestos fenólicos y la capacidad antioxidante de extractos de corteza de Pinus durangensis y Quercus sideroxyla

Authors

  • Marcela Soto-García
  • Martha Rosales-Castro

Keywords:

Compuestos bioactivos, corteza, fenoles, flavonoides, proantocianidina, Bioactive content, cork, flavonoid, phenolic compounds, proanthocyanidin.

Abstract

En la búsqueda de compuestos bioactivos de las plantas, la corteza de especies maderables es un subproducto promisorio, ya que contiene compuestos fenólicos de interés terapéutico. La extracción de estos metabolitos depende del disolvente que se utilice y de variables aplicadas en el proceso. Para un fin terapéutico, la medicina tradicional utiliza únicamente mezclas de etanol y agua. Se realizaron extracciones de la corteza de Pinus durangensis y Quercus sideroxyla, bajo un diseño experimental 2x3x3 para estudiar el efecto de soluciones hidroetanólicas 20, 50 y 80%, y la relación masa a extraer/volumen de disolvente 1/10, 1/20 y 1/30 sobre el rendimiento en sólidos, donde 28,72 ±0,9% correspondió a Pinus durangensis (PdE50-1/20) y 24,95±1,2% para Quercus sideroxyla (QsE50-1/30), la máxima concentración de fenoles totales se obtuvo con etanol 80%- 1/10 en ambas especies (PdE80- 1/10 con 712,36±13,4 mg equivalentes de ácido gálico (GAE)/g) y QsE80-1/10 de 592,97±10,6 (GAE/g), mientras que la capacidad antioxidante evaluada mediante las técnicas de DPPH, ABTS y FRAP, mostró que PdE20-1/30 y QsE50-1/10, tuvieron la mayor actividad. Se encontraron diferencias estadísticas (p<0,05) entre los tratamientos aplicados.

La concentración de etanol tuvo mayor efecto que la relación masa/volumen de extracción. Pinus durangensis contiene mayor concentración de fenoles y de flavonoides, respecto a Quercus sideroxyla, mientras que la cantidad de proantocianidinas es similar en ambas especies. Los flavonoides de Pinus durangensis son principalmente de tipo flavanona y flavonol, mientras que Quercus sideroxyla contiene ácido gálico y flavan-3-ol (catequinas).

Bark from timber species might be a promising target of therapeutical interest due to its content of bioactive, phenolic compounds. However, the extraction efficiency of these metabolites depends on the type of solvent chosen and the process variables analyzed. Traditional medicine only uses ethanol and water mixtures for therapeutical purposes. Therefore, in this study extractions of Pinus durangensis and Quercus sideroxyla bark were realized. In order to study the effect of the hydroethanolic solutions of 20, 50 and 80% and the relation mass/solvent volume ratio of 1/10, 1/20 and 1/30, an experiment design of 2x3x3 was followed, over the extract yield; where 28,72 ±0,9% corresponded to P. durangensis (PdE50-1/20) and 24,95±1,2% to Q. sideroxyla (QsE50-1/30). The highest content of phenolic compounds was obtained with ethanol 80%-1/10 in both species (PdE80-1/10 with 712,36±13,4 mg of gallic acid equivalent (GAE)/g) and QsE80-1/10 of 592,97±10,6 (GAE/g); while the antioxidant capacity evaluated through DPPH, ABTS and FRAP showed that PdE20-1/30 and QsE50-1/10 presented the strongest activity. Significant statistical differences (p<0,05) were found among the treatments analyzed. The ethanol concentration had a higher effect than the relation mass/solvent volume ratio. More importantly, P. durangensis showed the highest phenol and flavonoid concentration respect to Q. sideroxyla. However, the proanthocyanidin amount was similar in both species. Finally, the flavonoid content of P. durangensis is mainly composed by flavanone and flavonol type compounds, while Q. sideroxyla contains gallic acid and flavan-3-ol (catechins).

Downloads

Download data is not yet available.

References

Amyrgialaki, E.; Makris, D.P.; Mauromoustakos, A.; Kefalas, P. 2014. Optimisation of the extraction of pomegranate (Punica granatum) husk phenolics using water/ethanol solvent systems and response surface methodology. Industrial Crops and Products 59:216-222.

Aspé, E.; Fernández, K. 2011. Comparison of phenolic extracts obtained of Pinus radiata bark from pulp and paper industry and sawmill industry. Maderas. Ciencia y Tecnología 13(3):243-252.

Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Omar, A. K. M. 2013. Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering 117(4):426-436.

Bochi, V.C.; Barcia, M. T.; Rodrigues, D.; Speroni, C.S.; Giusti, M.M.; Godoy, H. T. 2014.

Polyphenol extraction optimisation from ceylon gooseberry (Dovyalis hebecarpa) pulp. Food Chemistry 164:347-354.

Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1):25-30.

Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Lagana, A. 2014. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QToF mass spectrometry. Wood Chemistry 158:392-400.

Chupin, L.; Maunu, S. L.; Reynaud, S.; Pizzi, A.; Charrier, B.; Bouhtoury, F. C. E. 2015. Microwave assisted extraction of maritime pine (Pinus pinaster) bark: Impact of particle size and characterization. Industrial Crops and Products 65:142-149.

Da Graça Campos, M.; Markham, K.R. 2007. Structure information from HPLC and on-line measured absorption spectra: flavones, flavonols and phenolic acids. Imprensa da Univ. de Coimbra.

Dang, Y. Y.; Zhang, H.; Xiu, Z.L. 2014. Microwave-assisted aqueous two-phase extraction of phenolics from grape (Vitis vinifera) seed. Journal of Chemical Technology and Biotechnology 89(10):1576-1581.

Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L.H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y.H. 2014. Effect of extraction solvent on total phenol content, total flavonoids content, and antioxidant activity of Limnophila aromatic. Journal of Food and Drug Analysis 22(3):296-302.

Elbir, M.; Es-Safi, N. E.; Amhoud, A.; Mbarki, M. 2015. Characterization of phenolic compounds in olive stones of three moroccan varieties. Maderas. Ciencia y Tecnología 17(3):479-492.

Frevel, M.A.E.; Pipingas, A.; Grigsby, W. J.; Frampton, C.M.; Gilchrist, N.L. 2012. Production, composition and toxicology studies of enzogenol Pinus radiata bark extract. Food and Chemical Toxicology 50:316-4324.

Gironi, F.; Piemonte, V. 2011. Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chemical Engineering Research and Design 89:857-862.

Heimler, D.; Vignolini, P.; Dini, M.G.; Romani, A. 2005. Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. Dry beans. J Agric Food Chem 53(8):3053-3056.

Hoffmann, D. 1996. Guía familiar de Plantas Medicinales. Fitoterapia práctica para un bienestar integral. Madrid. TIKAL, 256.

Jerez, M.; Pinelo, M.; Sineiro, J.; Núñez, M. 2006. Influence of extraction conditions on phenolic yields from pine bark: assesment of procyanidins polymerization degree by thiolysis. Food Chem 94(3):406-414.

Jerez, M.; Selga, A.; Sineiro, J.; Torres, J.; Núñez, M. 2007. A comparison between bark extracts from Pinus Pinaster and Pinus radiata: Antioxidant activity and procyanidin composition. Food Chem 100(2):439-444.

Ku, C.S.; Mun, S.P. 2008. Antioxidant properties of monomeric, oligomeric, and polymeric fractions in hot water extract from Pinus radiata bark. Wood Science and Technology 42(1):47-60.

Liu, C.W.; Wang, Y.C.; Lu, H.C.; Chiang, W.D. 2014. Optimization of ultrasound-assisted extraction conditions for total phenols with anti-hyperglycemic activity from Psidium guajava leaves. Process Biochemistry 49(10):1601-1605.

Manigandan, K.; Jayaraj, R.L.; Jagatheesh, K.; Elangovan, N. 2015. Taxifolin mitigates oxidative DNA damage in vitro and protects zebrafish (Danio rerio) embryos against cadmium toxicity. Environmental Toxicology and Pharmacology 9(3):1252-1261.

Nepote, V.; R Grosso, N.; Guzman, C. 2005. Optimization of extraction of phenolic antioxidants from peanut skins. Journal of the Science of Food and Agriculture 85:33-38.

Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Nuñez, M.J. 2005. Effect of solvent, temperature and solvent-to. Solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry 53:2111-2117.

Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9):1231-1237.

Ramos, V.; Bocalandro, C.; Riquelme, S.; Sanhueza, V.; Aspé, E.; Roeckel, M.; Fernández, K. 2013. Effect of the bench scale extraction conditions on Pinus radiata bark extract yield, antioxidant properties and composition. Maderas. Ciencia y Tecnología 15(1):31-44.

Rosales-Castro, M.; González-Laredo, R. F.; Rocha-Guzmán, N. E.; Gallegos-Infante, J. A.; Peralta-Cruz, J.; Karchesy, J. J. 2009. Evaluación química y capacidad antioxidante de extractos polifenólicos de cortezas de Pinus cooperi, P. engelmannii, P. leiophylla y P. teocote. Madera y Bosques 15(3):87-105.

Rosales-Castro, M.; González-Laredo, R. F.; Rocha-Guzmán, N. E.; Gallegos-Infante, J. A.; Rivas-Arreola, M.J.; Karchesy, J.J. 2012. Antioxidant activity of fractions from Quercus sideroxyla bark and identification of proanthocyanidins by HPLC-DAD and HPLC-MS. Holzforschung 66:577-584.

Seo, J.; Lee, S.; Elam, M. L.; Johnson, S. A.; Kang, J.; Arjmandi, B. H. 2014. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Science & Nutrition 2(2):174-180.

Shahidi, F.; Ambigaipalan, P. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. Journal of Functional Foods 18:820-897.

Sosa R. 1997. El poder medicinal de las plantas. APIA. 24.

Spigno, G.; Tramelli, L.; De Faveri, D. M. 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering 81(1):200-208.

Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M. 2011. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. Journal of Food Composition and Analysis 24(4):506-515.

Trabelsi, N.; Megdiche, W.; Ksouri, R.; Falleh, H.; Oueslati, S.; Soumaya, B.; Abdelly, C. 2010. Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology 43(4):632-639.

Xavier, L.; Freire, M.S.; Vidal-Tato, I.; González-Álvarez, J. 2015. Application of aqueous two phase systems based on polyethylene glycol and sodium citrate for the recovery of phenolic compounds from Eucalyptus wood. Maderas. Ciencia y Tecnología 17(2): 345-354.

Downloads

How to Cite

Soto-García, M., & Rosales-Castro, M. (2016). Efecto del solvente y de la relación masa/solvente, sobre la extracción de compuestos fenólicos y la capacidad antioxidante de extractos de corteza de Pinus durangensis y Quercus sideroxyla. Maderas-Cienc Tecnol, 18(4), 701–714. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/2566

Issue

Section

Article