Determination of decay resistance against Pleurotus ostreatus and Coniophora puteana fungus of heat-treated scotch pine, oak and beech wood species

  • Umit Ayata
  • Caglar Akcay
  • Bruno Esteves

Abstract

The objective of this study, to investigate decay resistance against Pleurotus ostreatus and Coniophora puteana fungus of heat-treated (ThermoWood method) Scotch pine, oak and beech wood species. Scotch pine (Pinus sylvestris), oak (Quercus petreae) and beech (Fagus orientalis) wood species were heat treated at 190°C for 2 h, 212°C for 1 h and 2 h by the ThermoWood® method. Untreated and heat-treated specimens were exposed to white-rot fungus (Pleurotus ostreatus) and brown-rot fungus (Coniophora puteana) for 12 weeks according to procedures defined in JIS K 1571 standard. After weight losses of all specimens were calculated. According to the results, least weight loss was determined on heat treated at 212°C for 2 h. Heat treatment can be used effectively against fungal attack for Scotch pine, oak and beech wood species.

References

Brischke, C.; Meyer-Veltrup, L. 2016. Performance of thermally modified wood during 14 years of outdoor exposure. International Wood Products Journal 7(2): 89-95.

Brischke, C.; Welzbacher, C.R.; Rapp, A. O.; Augusta, U.; Brandt, K. 2009. Comparative studies on the in-ground and above-ground durability of European oak heartwood (Quercus petraea Liebl. and Quercus robur L.). European Journal of Wood and Wood Products 67(3): 329-338.

Boonstra, M.; Van Acker, J.; Kegel, E.; Stevens, M. 2007. Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1): 31-57.

Dirol, D.; Guyonnet, R. 1993. Durability by rectification process, In: International Research Group Wood Pre, Section 4-Processes, Nº IRG/WP 93-40015.

Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. 2006. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41:193-207. DOI: 10.1007/s00226-006-0099-0.

Esteves, B.; Nunes, L.; Domingos, I.; Pereira, H. 2014. Comparison between heat treated sapwood and heartwood from Pinus pinaster. European Journal of Wood and Wood Products 72(1): 53-60.

Hakkou, M.; Pétrissans, M; Gérardin, P.; Zoulalian, A. 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91: 393-397.

ISO 554, 1976. Standard atmospheres for conditioning and/or testing - Specifications International Organization for Standardization, Geneva, Switzerland.

Kamdem, D.P.; Pizzi, A.; Jermannaud, A. 2002. Durability of heat-treated wood. Holz Als Roh- Werkst 60(1): 1-6.

Leithoff, H., Peek R. 2001. Heat treatment of bamboo, International Research Group Wood Preservation, Section 4-Processes, Nº IRG/WP 01-40216.

Korkut, S.; Akgül, M.; Dündar, T. 2008. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris) wood. Bioresource Technology 99(6): 1861-1868.

Japanese Standard Association. JIS. 2004. Test methods for determining the effectiveness of wood preservatives and their performance requirements. JIS K 1571. Tokyo, Japan.

Sailer, M.; Rapp, A.; Leithoff, H. 2000. Improved resistance of Scots pine and spruce by application of an oil-heat treatment, In: International Research Group Wood Pre, Section 4-Processes, Nº IRG/WP 00-40162.

Sivrikaya, H.; Can, A.; de Troya, T.; Conde, M. 2015. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas-Cienc Tecnol 17(3): 559-570.

Tjeerdsma, B.; Stevens, M.; Militz, H. 2000. Durability aspects of hydrothermal treated wood, International Research Group Wood Preservation, Section 4-Processes, Nº IRG/WP 00-40160.

Tjeerdsma, B.; Stevens, M.; Militz, H.; Van Acker, J. 2002. Effect of process conditions on moisture content and decay resistance of hydro-thermally treated wood. Holz Holzverwert 5: 94-99.

Unsal, O.; Ayrilmis, N. 2005. Variations in compression strength and surface roughness of heattreated
Turkish river red gum (Eucalyptus camaldulensis) wood. J Wood Sci 51(4): 405-409.

Viitanen, H.; Jämsä, S.; Paajanen, L.; Nurmi, A.; Viitaniemi, P. 1994. The effect of heat treatment on the properties of spruce International Research Group on Wood Preservation (Doc. No. IRG/WP 94-40032).

Weiland, J.J.; Guyonnet, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Als Roh- Werkst 61(3): 216–220. DOI: 10.1007/s00107-003-0364-y

Welzbacher, C.; Rapp, O. 2002. Comparison of thermally modified wood originating from four industrial scale processes- durability, International Research Group Wood Preservation, Section 4-Processes, Nº IRG/WP 02-40229.

Yalcin, M.; Ibrahim, H. 2015. Changes in the chemical structure and decay resistance of heattreated narrow-leaved ash wood. Maderas-Cienc Tecnol 17(2): 435-446.
How to Cite
AYATA, Umit; AKCAY, Caglar; ESTEVES, Bruno. Determination of decay resistance against Pleurotus ostreatus and Coniophora puteana fungus of heat-treated scotch pine, oak and beech wood species. Maderas. Ciencia y Tecnología, [S.l.], v. 19, n. 3, p. 309-316, july 2017. ISSN 0718-221X. Available at: <http://revistas.ubiobio.cl/index.php/MCT/article/view/2885>. Date accessed: 24 nov. 2017.
Section
Article

Keywords

Brown rot; Fagus orientalis; heat modification; Pinus sylvestris; Quercus petreae; ThermoWood; white rot.

Most read articles by the same author(s)