Uso del método de resistografía para la predicción de la densidad básica de la madera en árboles en pie de Pinus radiata

Main Article Content

Cristián Barría Simón Sandoval Gerson Rojas

Abstract

El objetivo de esta investigación fue desarrollar modelos de estimación de la densidad básica de la madera a nivel de árbol completo y a diferentes alturas de árboles de Pinus radiata, a partir de la resistencia de la madera medida con el resistógrafo, a la altura del pecho a 1,3 m sobre el nivel suelo (DAP). Se utilizó una muestra de 29 árboles de 15 años de edad, obtenidos al azar, en un ensayo clonal establecido en la Región del Bío-Bío, Chile. Para cada árbol, en seis diferentes alturas relativas del fuste, se determinó la resistencia de la madera y la densidad básica, a partir de 174 mediciones realizadas con el resistógrafo y en muestras de rodelas. Los resultados obtenidos indicaron que tanto la densidad básica como la resistencia de la madera disminuyeron significativamente en función de la altura del árbol, en la dirección base y altura comercial, en un 16,8% y 38,5%, respectivamente. Los valores de resistencia media determinados al DAP, presentaron una variación entre árboles de 11% y 19%. Se generó un modelo que estima la densidad básica a nivel de árbol completo utilizando como única variable predictora la resistencia media de la madera medida al DAP, con un error de estimación de 11,9 kg/m3, el cual no disminuye al incorporar variables de estado de árbol (DAP y HT). A partir de este modelo se generó un método para estimar la densidad básica en diferentes secciones del árbol.The objective of this research was to develop models for estimation of the basic density of wood at full tree level and at different heights of Pinus radiata standing trees, measured from the wood resistance using the resistography at DBH level. A sample of 29 trees of 15 years old was used for the experiment. The trees were selected in a clonal field test established in the Bío-Bío Region, Chile. For each tree, 174 measurements were made with the resistograph and wood disks were obtained to determine the wood resistance and the basic density at six different relative heights of the stem. As a result, a significant decrease of the basic density and resistance of the wood was observed, from the base to the apex of the trees, with values of 16,8% and 38,5% of decrease, respectively for each variable. The average for the resistance values determined at DBH varied between 11% and 19% among the measured trees. A prediction model was generated to estimate the basic density at the tree level using the average resistance of the wood measured to the DBH. The adjustment parameters of the model was a root mean square error value of 11,9 kg/m3, which did not decrease when other variables of tree (DBH or total height) were incorporated. As a main conclusion, a new method to estimate the wood basic density at different sections of the tree was generated using the adjusted model.

Article Details

How to Cite
BARRÍA, Cristián; SANDOVAL, Simón; ROJAS, Gerson. Uso del método de resistografía para la predicción de la densidad básica de la madera en árboles en pie de Pinus radiata. Maderas. Ciencia y Tecnología, [S.l.], v. 19, n. 3, p. 349-362, july 2017. ISSN 0718-221X. Available at: <http://revistas.ubiobio.cl/index.php/MCT/article/view/2889>. Date accessed: 23 sep. 2017.
Keywords
Evaluación no destructiva; modelo estadístico; métodos no destructivos; pino radiata; propiedades de la madera; Non-destructive evaluation; non-destructive methods; radiate pine; statistical model; wood properties.
Section
Article

References

Abellán, E. 2011. Caracterización de la anisotropía de la madera por medios de las técnicas no destructivas del resistógrafo y del georradar. Universidad Politécnica de Valencia, España. 97p.

Acuña, L.; Basterra L.; Casado, M.; López, G.; Ramón-Cueto, G.; Relea, E.; Martínez, C.; González, A. 2011. Aplicación del resistógrafo a la obtención de la densidad y la diferenciación de especies de madera. Materiales de Construcción 61(303): 451-464.

ASTM International. ATM. 2009. Annual Book of ASTM Standards, Section 4 Construction, Vol 04.10 Wood. West Conshohocken, Pennsylvania, United States.

Bamber, R.; Burley, J. 1983. The wood properties of radiata pine. Commonwealth Agricultural Bureaux. England. First edition. ISBN 0 85198 516 5. 84p.

Blanco, J. 2012. Caracterizacao tecnológica da madeira jovem de Teca (Tectona grandis L.f.). Pós-Graduação em Ciência e Tecnologia da Madeira, título de Mestre. Universidade Federal de Lavras,Brasil. 81p.

Bouffier, L.; Charlot, C.; Raffin, A.; Rozenberg, P.; Kremer, A. 2008. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.)?.Annals of Forest Science 65(1): 1-8.

Carson, S.; Cown, D.; Mckinley, R.; Moore, J. 2014. Effects of site, silviculture and seedlot on wood density and estimated wood stiffness in radiata pine at mid-rotation. New Zealand Journal of Forest Science 44(26): 1-12.

Couto, A.; Trughilo, P.; Neves, T. 2013. Modeling of basic density of wood from Eucalyptus grandis and Eucalyptus uruphylla using nondestructive methods. Cerne 19(1): 27-34.

Cown, D.J.; McConchie, D. 1980. Wood property variations in an old-crop stand of radiata pine. New Zealand Journal of Forest Science 10(3): 508-520.

Cown, D.; Clement, B. 1983. A wood densitometer using direct scanning with x-rays. Wood Science and Technology 17: 91-99.

Diaz-vaz, J.E. 1981. Delimitación de madera temprana – tardía y juvenil –madura en Pino oregón. Bosque 4(1): 55 -58.

Donalson, L.A.; Evans, R.; Cown, D.J.; Lausberg, M.J.F. 1995. Clonal variation of wood density variables in Pinus radiata. New Zealand Journal of Forest Science 25(2): 175-188.

Eckard, J.; Isik F.; Bullock, B.; Li B.; Gumpertz, M. 2010. Selection efficiency for solid wood traits in Pinus taeda using time-of-flight acoustic and micro-drill resistance methods. Forest Science 56(3): 233-241.

Fundová, I. 2012. In situ wood quality assessment in interior Spruce. Master of Science Thesis, University of British Columbia, Vancouver, Canada.

Gao, P.; Wang, X.; Brashaw, B.; Ross, R.; Wang, L. 2012. Rapid assessment of wood density of standing trees with nondestructive methods-A review. In: International Conference on Biobase Material Science and Engineering (BMSE), October 21-23, 2012, Changsha, China. p. 262-267.

Gantz, C. 2002. Evaluating efficiency of the resistograph to estimate genetic parameters for wood density in two softwood and two hardwood species. Master of Science Thesis, North Carolina State University, Raleigh, United State.

Gomes, A.; Trugilho, P.; Gomide, J.; Moreira, J.; Andrade, C.; Nogueira, I. 2011. Determinacao da densidade básica da madeiras de Eucalyptus por diferentes métodos ñao destructivos. Revista Árvore 35(2): 349-358.

Isik, F.; Li, B. 2003. Rapid assessment of wood density of live trees using the resistograph for selection in tree improvement programs. Canadian Journal of Forest Research 33(12): 2426-2435.

Kahl, T.; Wirth, C.; Mund, M.; Böhnisch, G.; Schulze, E-D. 2009. Using drill resistance to quantify the density in coarse woody debris of Norway spruce. European Journal of Forest Research 128(5):467-473.

Lima, J.; Cardoso, R.; Trughilo, P.; Da Cruz, C.; Da Silva, R. 2007. Use of the resistograph for Eucalyptus wood basic density and perforation resistance estimative. Scientia Forestalis 75(1): 85-93.

López, A.; Genes, P.; López, J. 2010. Evaluación No-destructiva de la densidad de la madera de árboles vivos en pie de Eucalyptus grandis utilizando Resistógrafo. XXIV Jornadas Forestales de Entre Ríos, Nov, 2010, Concordia, Argentina.

McConchie, D. 1995. Wood quality of radiata pine on farm sites, In: Wood quality workshop 95. FRI Bulletin N° 201. New Zealand, Forest Research Institute Ltd, Rotorua.

Megraw, R.A. 1985. Wood quality factors in loblolly pine. The influence of tree age, position in tree, and cultural practice on wood specific gravity, fiber length, and fibril angle. TAPPI PRESS. Atlanta, GA, United State.

Moya, R.; Salazar, F.; Valenzuela, L. 2002. Efecto de la fertilización a la pradera en la densidad básica de la madera de Pinus radiata. D. Don. Investación Agraria: Sistema Recursos Forestales 11(1): 181-192.

Moya, R.; Tomazello, M. 2009. Wood density variation and tree ring demarcation in Gmelina arborea trees using X-ray densitometry. Cerne 15(1): 92-100.

Oliveira, J.T.S.; Wang, X.; Baptista, G. 2015. Assessing specific gravity of young Eucalypt plantation trees using a resistance drilling technique, In: Proceedings of the 19th International Nondestructive Testing and Evaluation of Wood Symp. Sept, 22-25, Sao Paulo, Brazil. 574-584.

Ramírez, M.; Peredo, M. 2015. Ten years of experience using NIR in Arauco: From model development to operational use in Eucalyptus sp. breeding program and commercial plantations assessment, In: Proceedings of the 19th International Nondestructive Testing and Evaluation of Wood Symposium, Sept, 22-25, Sao Paulo, Brazil.

Rinn, F. 1994. Resistographic visualization of tree-ring density variations, In: International conference on tree rings, environment and humanity relationships and processes. Arizona, United State.

Rinn, F.; Schweingruber, H.; Schar, E. 1996. Resistograph and x-ray density charts of wood comparartive evaluation on drill resistance profiles and x-ray density charts of different wood species. Holzforschung 50(4): 303-311.

Rinn, F. 2012. Basics of micro-resistance drilling for timber inspection. Holztechnologie 53(3): 24-29.

Soto, L.; Valenzuela, L.; Lasserre, J.P. 2012. Efecto de la densidad de plantación inicial en el módulo de elasticidad dinámico de árboles en pie y trozas de una plantación de pino radiata de 28 años, en la zona de arenales, Chile. Maderas. Ciencia y Tecnología 14(2): 209-224.

Schimleck, L.; Mora, C.; Daniels, R. 2003. Estimation of the physical wood properties of green Pinus taeda radial wood samples by near infrared spectroscopy. Canadian Journal of Forest Research33(12): 2297-2305.

Tsehaye, A. 1995. Within and between-tree variations in the Wood quality of radiata pine. Doctoral Thesis, University of Canterbury, New Zealand.

Wang, X. 2013. Acoustic measurements on trees and logs: a review and analysis. Wood Science and Technology 47: 965-975.

Zobel, B.; Van Buijtenen, J.P. 1989. Wood variation: its causes and control. Springer-Verlag, Berlin.