Discrimination of wood and charcoal from six caatinga species by near-infrared spectroscopy

  • Silvana Nisgoski
  • Francielli Rodrigues Ribeiro Batista
  • Tawani Lorena Naide
  • Nadia Catarina Clivati Laube
  • Amanda Carolina Ribas Leão
  • Graciela Inés Bolzon de Muñiz

Abstract

Correct identification of species in wood and charcoal commerce is important, and rapid and nondestructive evaluation based on near-infrared techniques can be a good alternative. Four trees from Combretum leprosum, Croton argyrophylloides, Jatropha mutabilis, Luetzelburgia auriculata, Mimosa tenuiflora and Poincianella bracteosa, were cut in a natural forest in the municipality of Coremas, Paraíba state and stem discs with thickness of about 80 mm were taken at 0, 25, 50, 75 and 100% of commercial height. For charcoal production, each sample was wrapped in aluminum foil and carbonized in a muffle furnace, with a final temperature of 450 °C and a heating rate of 1.66 °C min-1. Spectra were collected directly from sample surface. The best pretreatment was second derivative, while the best classification method was PCA-LDA, and the analysis of full spectra (4000-10000 cm-1) was indicated. In classification, there was no difference between surfaces where spectra was collected, so in practice, in commercial control for example, the information can be obtained from any surface. For rapid analysis for purposes of control of forest practices or illegal commerce, spectra collected directly from wood and charcoal can be applied to distinguish these six Caatinga species.

References

Adedipe, O.E.; Dawsin-Andoh, A.B.; Slahor, J.; Osborn, A.L. 2008. Classification of red oak (Quercus rubra) and white oak (Quercus alba) wood using a near infrared spectrometer and soft independent modelling of class analogies. Journal of Near Infrared Spectroscopy 16(1): 49-57.

Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, DOI: http://dx.doi.org/10.1127/0941-2948/2013/0507

American Society for Testing and Materials. 2000. ASTM E1655 –Standard practices for infrared multivariate, quantitative analysis. Vol.03.06. West Conshohocken, Pennsylvania, USA.

APNE. Associação Plantas do Nordeste. 2015. Lista de planos de manejo no bioma caatinga – 2012. Elaborado pela APNE (Dados fornecidos pelas OEMA’s). In: Estatística florestal da caatinga, v.2, p.53-101.

Bächle, H.; Zimmer, B.; Wegener, G. 2012. Classification of thermally modified wood by FT-NIR spectroscopy and SIMCA. Wood Science and Technology 46(6): 1181-1192. doi: 10.1007/s00226-012-0481-z.

Barbosa, M.R.V. 2015. Espécies arbóreas da caatinga. In: Estatística florestal da caatinga, v.2, p.110-140.

Braga, J.W.B.; Pastore, T.C.M.; Coradin, V.T.R.; Camargos, J.A.A.; Silva, A.R.D. 2011. The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (cites appendix II). Iawa Journal 32(2): 285-296.

Brunner, M.; Eugster, R.; Trenka, E.; Bergamin-Strotz, L. 1996. FT-NIR spectroscopy and wood identification. Holzforschung 50(2): 130-134.

Cartaxo, S.L.; Souza, M.M.A.; Albuquerque, U.P. 2010. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. Journal of Ethnopharmacology 131 (2): 326–342. doi:10.1016/j.jep.2010.07.003

Cavalcanti, M.C.B.T.; Ramos, M.A.; Araujo, E.L.; Albuquerque, U.P. 2015. Implications from the use of non-timber forest products on the consumption of wood as a fuel source in human-dominated semiarid landscapes. Environmental Management 56(2): 389–401. doi: 10.1007/s00267-015-0510-4

Davrieux, F. ; Rousset, P.L.A.; Pastore, T.C.M.; Macedo, L.A.; Quirino, W.F. 2010. Discrimination of native wood charcoal by infrared spectroscopy. Química Nova 33(5): 1093–1097.

França. R,F. 2015. Estrutura anatômica da Madeira e do carvão de espécies da caatinga. Dissertação. Universidade Federal do Paraná. Pós-Graduação em Engenharia Florestal. Curitiba, PR. UFPR. 100f.

Hein, P.R.G.; Lima, J.T.; Chaix, G. 2010. Effects of sample preparation on NIR spectroscopic estimation of chemical properties of Eucalyptus urophylla S.T. Blake wood. Holzforschung 64: 45-54.

Horikawa, Y.; Tazuru, S.M.; Sugiyama, J. 2015. Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons. Journal of Wood Science 61: 251–261. doi: 10.1007/s10086-015-1462-2

Hwang, S.W.; Horikawa, Y.; Lee, W.H.; Sugiyama, J. 2016. Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. Journal of Wood Science 62: 156–167. doi: 10.1007/s10086-016-1540-0

IBGE. 2012. Instituto Brasileiro de Geografia e Estatística. Quantidade produzida e valor (mil reais) da produção na extração vegetal por tipo de produto extrativo –IBGE - Adaptado pela APNE. In: Estatística florestal da caatinga, v.2, agosto 2015, p.49-52.

Meder, R.; Kain, D.; Ebdon, N.; Macdonell, P.; Brawner, J.T. 2014. Identifying hybridization in Pinus species using near infrared spectroscopy of foliage. Journal of Near Infrared Spectroscopy 22: 337-345. doi: 10.1255/jnirs.1127

MMA. Ministério do Meio Ambiente. 2016. Caatinga. Disponível em http://www.mma.gov.br/biomas/Caatinga. Acesso em 17/08/2016.

Monteiro, T.C.; Silva, R.V.; Lima, J.T.; Hein, P.R.G.; Napoli, A. 2010. Use of near infrared spectroscopy to distinguish carbonization processes and charcoal sources. Cerne 16(3): 381-390.

Muñiz, G.I.B.; Carneiro, M.E.; Nisgoski, S.; Ramirez, M.G.L.; Magalhães, W.L.E. 2013. SEM and NIR characterization of four charcoal species. Wood Science and Technology 47(4): 815-823. doi 10.1007/s00226-013-0539-6.

Muñiz, G.I.B.; Carneiro, M.E.; Batista, F.R.R.; Schardosin, F.Z.; Nisgoski, S. 2016. Wood and charcoal identification of five species from the miscellaneous group known in Brazil as “angelim” by near-ir and wood anatomy. Maderas. Ciencia y tecnología 18(3): 505 – 522. doi: 10.4067/S0718-221X2016005000045

Ndagijimana, C.; Pareyn, F.G.C.; Riegelhaupt, E. 2015. Uso do solo e desmatamento da caatinga: um estudo de caso dos estados Paraíba e Ceará – Brazil. In: Estatística florestal da caatinga, v.2, p.18-29.

Machado Neto, A.P.; Brandão, C.F.L.S.; Duarte, B.; ALMIR, J.; Marangon, L.C.; Feliciano, A.L.P. 2015. Densidade e poder calorífico como base para prevenção de incêndios florestais sob linhas de transmissão. Nativa, 3(1): 10-15. doi: 10.14583/2318-7670.v03n01a02

Nisgoski, S.; Carneiro, M.E.; Muñiz, G.I.B. 2015a. Influencia de la granulometría de la muestra en la discriminación de especies de Salix por infrarrojo cercano. Maderas. Ciencia y Tecnología 17(1):195-204. doi: 10.4067/S0718-221X2015005000019

Nisgoski, S.; Muñiz, G.I.B.; Morrone, S.R.; Schardosin, F.Z.; França, R.F. 2015b. NIR and anatomy of wood and charcoal from Moraceae and Euphorbiaceae species. Ciência da Madeira 6(3): 183-190. doi: 10.12953/2177-6830/rcm.v6n3p183-190

Nisgoski, S.; Schardosin, F.Z.; Batista, F.R.R.; Muñiz, G.I.B.; Carneiro, M.E. 2016. Potential use of NIR spectroscopy to identify Cryptomeria japonica varieties from southern Brazil. Wood Science and Technology 50(1): 71-80. doi: 10.1007/s00226-015-0783-z

Pastore, T.C.M.; Braga, J.W.B.; Coradin, V.T.R.; Magalhães, W.L.E.; Okino, E.Y.A.; Camargos, J.A.A.; De Muñiz, G.I.B.; Bressan, O.A.; Davrieux, F. 2011. Near infrared spectroscopy (NIRS) as a potential tool for monitoring trade of similar woods: discrimination of true magogany, cedar, andiroba and curupixá. Holzforschung, 65(1): 73-80.

Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of Molecular Structure 988: 65-72. doi: 10.1016/j.molstruc.2010.12.004

Ramos, M.A.; Medeiros, P.M.; Almeida, A.L.S; Feliciano, A.L.P.; Albuquerque, U.P. 2008a. Can wood quality justify local preferences for firewood in an area of Caatinga (dryland) vegetation? Biomass and Bioenergy 32 (6): 503-509. doi:10.1016/j.biombioe.2007.11.010

Ramos, M.A.; Medeiros, P.M.; Almeida, A.L.S; Feliciano, A.L.P.; Albuquerque, U.P. 2008b. Use and knowledge of fuelwood in an area of Caatinga vegetation in NE Brazil. Biomass and Bioenergy 32 (6): 510-517. doi:10.1016/j.biombioe.2007.11.015

Ramos, M.A.; Albuquerque, U.P. 2012. The domestic use of firewood in rural communities of the Caatinga: How seasonality interferes with patterns of firewood collection. Biomass and Bioenergy 39(1): 147-158. doi:10.1016/j.biombioe.2012.01.003

Sandak, A.; Sandak, J.; Negri, M. 2011. Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Science and Technology, 45(1):35-48.

Santos, J.P.; Araújo, E.L.; Albuquerque, U.P. 2008. Richness and distribution of useful woody plants in the semi-arid region of northeastern Brazil. Journal of Arid Environments 72(5): 652–663. doi:10.1016/j.jaridenv.2007.08.004

Santos, M.G.; Oliveira, M.T.; Figueiredo, K.V. Falcão, H.M.; Arruda, E.C.P.; Cortez, J.A.; Sampaio, E.V.S.B.; Ometto, J.P.H.B.; Menezes, R.,S.C.; Oliveira, A.F.M.; Pompelli, M.F.; Antonino, A.C.D. 2014. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theoretical and Experimental Plant Physiology 26(1): 83-99. doi: 10.1007/s40626-014-0008-0

Schwanninger, M.; Rodrigues, J.C.; Fackler, K. 2011. A review of band assignments in near infrared spectra of wood and wood components. Journal of Near Infrared Spectroscopy 19: 287-308. doi: 10.1255/jnirs.955

Seyffarth, J.A. 2012. Semiárido o bioma mais diverso do mundo. Revista do Instituto Humanitas Unisinos 389: 9-10.

Silva, S.I.; Oliveira, A.F.M.; Negri, G.; Salatino, A. 2014. Seed oils of Euphorbiaceae from the Caatinga, a Brazilian tropical dry Forest. Biomass and Bioenerg, 69: 124-134. doi: 10.1016/j.biombioe.2014.07.010

Souza, B.I.; Menezes, R.; Artigas, R.C. 2015. Efeitos da desertificação na composição de espécies do bioma Caatinga, Paraíba/Brasil. Investigaciones Geográficas, Boletín, n.88, Instituto de Geografia, UNAM, Mexico, pp. 45-59. dx.doi.org/10.14350/rig.44092

Trentin, D.S.; Giordania, R.B.; Zimmer, K.R.; Silva, A.G.; Silva, M.V.; Correia, M.T.S.; Baumvol, I.J.R.; Macedo, A.J. 2011. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. Journal of Ethnopharmacology 137(1):327– 335. doi:10.1016/j.jep.2011.05.030

Tsuchikawa, S.; Kobori, H. 2015. A review of recent application of near infrared spectroscopy to wood science and technology. Journal of Wood Science 61:213–220. Doi: 10.1007/s10086-015-1467-x

Zhang, X.; Yu, H.; Li, B.; Li, W.J.; Li, X.; Bao, C. 2014. Discrimination of Pinus yunnanensis, P. kesiya and P. densata by FT-NIR. Journal of Chemical and Pharmaceutical Research 6(4): 142-149.
Published
2017-11-29
How to Cite
NISGOSKI, Silvana et al. Discrimination of wood and charcoal from six caatinga species by near-infrared spectroscopy. Maderas. Ciencia y Tecnología, [S.l.], v. 20, n. 2, nov. 2017. ISSN 0718-221X. Available at: <http://revistas.ubiobio.cl/index.php/MCT/article/view/3036>. Date accessed: 14 dec. 2017.

Most read articles by the same author(s)