Mechanical parameters of thermally modified ash wood determined on compression in tangential direction

  • Waldemar Moliński
  • Edward Roszyk
  • Aleksander Jabłoński
  • Jakub Puszyński
  • Janusz Cegieła
Keywords: Fraxinus excelsior, mechanical properties, modulus of elasticity, stress-strain relation, thermally modified wood


Mechanical parameters of ash wood (Fraxinus excelsior) subjected to compression in tangential direction, before and after its thermal modification and measured at the moisture content close to the equilibrium moisture content of wood used inside and outside the house,  (4 and 12%) were compared. Thermal modification of wood was performed at 190°C and 200°C for 2 hours in industrial conditions. During the measurements, the moisture content of the modified and control samples was the same. The parameters compared included: modulus of elasticity, stress at proportionality limit, relative linear strain at proportionality limit and accumulated elastic energy. Thermal modification of ash wood at 190°C contributed to the deterioration of its mechanical parameters determined during compression in tangential direction; the deterioration was greater for wood tissue of higher moisture content. The values of mechanical parameters of thermally modified wood (except for elastic energy), determined in compression test in tangential direction, decrease with the its increasing moisture more than for the control wood.


ARNOLD, M. 2010. Effect of moisture on the bending properties of thermally modified beech and spruce. Journal of Materials Science 45(3): 669-680.

BOONSTRA, M. J.; VAN ACKER, J.; TJEERDSMA, B. F.; KEGEL E. F. 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7): 679-690.

BORREGA, M.; KÄRENLAMPI, P. P. 2008. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. European Journal of Wood and Wood Products 66(1): 63-69.

BURGERT, I.; BERNASCONI, A.; NIKLAS, K. J.; ECKSTEIN, D. 2011. The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees. Holzforschung 55(5): 449-454.

CLAUSS, S.; PESCATORE, C.; NIEMZ, P. 2014. Anisotropic elastic properties of common ash (Fraxinus excelsior L.). Holzforschung 68(8): 941-949.

ESTEVES, B. M.; PEREIRA, H. M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404.

ETHINGTON, R. L.; ESKELSEN, V.; GUPTA, R. 1996. Relationship between compression strength perpendicular to grain and ring orientation. Forest Products Journal 46(1): 84-86.

GIBSON, L. J.; ASHBY, M. F. 1997. Cellular solids. Structural and properties. Second edition. Cambridge University Press, Cambridge, UK.

GREEN, D. W.; WINANDY J. E.; KRETSCHMANN, D. E. 1999. Mechanical properties of wood. Wood handbook: Wood as an engineering material. Madison, WI : USDA Forest Service, Forest Products Laboratory.

HOFFMEYER, P.; DAMKILDE, L.; PEDERSEN, T. N. 2000. Structural timber and glulam in compression perpendicular to grain. Holz Roh Werkst 58(1): 73-80.

HUGHES, M.; CALLUM HILL, C.; PFRIEM, A. 2015. The toughness of hygrothermally modified wood. Holzforschung 69(7): 851-862.

ICEL, B.; GULER, G.; ISLEYEN, O.; BERAM, A.; MUTLUBAS, M. 2015. Effect of industrial heat tretment on the properties of Spruce and Pine woods. BioResources 10(3): 5159-5173.

LI SHI, J.; KOCAEFE, D.; ZHANG, J. 2007. Mechanical behavior of Qu´ebec wood species heat-treated using ThermoWood process. Holz Roh Werkst 65(4): 255-259.

LUNG, E. M.; BEJO, L.; SZALAI, J.; KOVACS, Z.; ANDERSON, B.R. 2002. Orthotropic strength and elasticity of hardwoods in relation to composite manufacture. Part II. Orthotropy of compression strength and elasticity. Wood and Fiber Science 14(2): 350-365.

MOLIŃSKI, W.; FABISIAK, E.; ŚRODECKI, Ł. 2010. Selected mechanical properties of thermally modified American Ash wood. Annals of WULS. Forestry and Wood Technol 72: 32-36.

MOLIŃSKI, W.; ROSZYK, E.; JABŁOŃSKI, A.; PUSZYŃSKI, J.; CEGIEŁA, J. 2016. Mechanical parameters of thermally modified ash wood determined on compression in radial direction. Maderas-Cienc Tecnol 18(4):577-586.

MURATA, K.; WATANABE, Y.; NAKANO, T. 2013. Effect of thermal treatment on fracture properties and adsorption properties of Spruce wood. Materials 6(9): 4186-4197.

NIEMZ, P.; CLAUSS, S.; MICHEL, F.; HÄNSCH, D.; HÄNSEL, A. 2014. Physical and mechanical properties of common ash (Fraxinus excelsior L.). Wood Research 59 (4): 671-682.

OLEK, W.; BONARSKI, J. T. 2008. Texture changes in thermally modified wood. Archives of Metallurgy and Materials 53(1): 207-211.

OLEK, W.; MAJKA, J.; CZAJKOWSKI, Ł. 2013. Sorption isotherms of thermally modified wood. Holzforschung 67(2): 183-191.

OZYHAR, T.; HERING, S.; NIEMZ, P. 2012. Moisture-dependent orthotropic tension-compression asymmetry of wood. Holzforschung 67(4): 395-404.

PELLICANE, P. J.; BODIG, J.; MREMA, A. L. 1994. Behavior of wood in transverse compression. Journal of Testing and Evaluation 22(4): 383-387.

PN-77/D-04229. 1977. Drewno. Oznaczanie wytrzymałości na ściskanie w poprzek włókien (Wood. Determination of compression strength across the grain – standard in Polish)

THERMOWOOD® HANDBOOK. 2003. Finnish Thermowood Association, Helsinki (

WINDEISEN, E.; BÄCHLE, H.; ZIMMER, B.; WEGENER, G. 2009. Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung 63(6): 773-778.