Longitudinal variation in selected wood properties of oriental beech and caucasian fir

Authors

  • Elif Topaloglu
  • Emir Erisir

Keywords:

Abies nordmanniana, Fagus orientalis, longitudinal variation, stem height, wood properties

Abstract

In this study, several wood properties were investigated along with the longitudinal direction for oriental beech and caucasian fir trees grown in Turkey. Wood density, compression strength parallel to grain, chemical characteristics (holocelluose, celluose, lignin), fiber dimensions (fiber length, fiber width, fiber lumen width, fiber cell wall thickness) were measured from the sapwood of the discs taken at the stem heights of 1.30, 6.30 and 12.30 meters. Both wood species showed clear trends in wood properties along longitudinal direction. For both wood species, the highest values in density, compression strength, volumetric shrinkage and swelling were at 1.30 m stem height, and the investigated paraeters decreased along with the stem height, while longitudinal shrinkage and swelling percentage increased. The highest cellulose content was found at 1.30 m stem height, and the highest lignin content was found at 12.30 m stem height for both wood species. The longest fibers and the thickest fiber walls were determined at 1.30 m stem height in both wood species. These results clearly indicated that stem height greatly affected the investigated wood properties for both wood species.

Downloads

Download data is not yet available.

References

Adamopoulos, S.; Chavenetidou, M.; Passialis, C.; Voulgaridis, E. 2010. Effect of cambium age and ring width on density and fibre length of black locust and chestnut wood. Wood Research 55 (3): 25-36.

Antony, F.; Schimleck, L.R.; Daniels, R.F.; Clark III, A.; Hall, D.B. 2010. Modeling the longitudinal variation in wood specific gravity of planted loblolly pine (Pinus taeda) in the United States. Canadian Journal of Forest Research 40: 2439-2451.

Ay, N.; Topaloglu, E.; Akpınar, E. 2012. The effects of stem height on the physical properties of European larch (Larix decidua Mill.) wood. Innovations in Forest Industry and Engineering Design, November 15-17, Yundola, Bulgaria.

Azeez, M.A.; Andrew, J.E.; Sithole, B. 2016. Preliminary investigation of Nigerian Gmelina arborea and Bambusa vulgaris for pulp and paper production. Maderas-Cienc Tecnol 18(1):65-78.

Baar, J.; Tippner, J.; Rademacher, P. 2015. Prediction of mechanical properties - modulus of rupture and modulus of elasticity – of five tropical species by nondestructive methods. Maderas-Cienc Tecnol 17(2): 239-252.

Bektas, İ.; Guler, C. 2001. The determination of some physical properties of beech wood (Fagus orientalis Lipsky.) in the Andırın region. Turkish Journal of Agriculture and Forestry 25: 209-215.

Bergander, A.; Salmén, L. 2002. Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science 37 (1): 151-156.

Bhat, K.M.; Bhat, K.V.; Dhamodaran, T.K. 2007. Wood density and fiber length of Eucalyptus grandis grown in Kerala, India. Wood and Fiber Science 22 (1): 54-61.

Bozkurt, A.Y.; Erdin, N. 1997. Wood Technology. Istanbul University Publication No: 3998, Faculty of Forestry Publication No: 445, ISBN: 975-404-449-X

Browning, B.L. 1967. Methods of Wood Chemistry. Vol. II. John Wiley and Sons Inc. New York.

Campbell, A.G.; Kim, W.J.; Koch, P. 2007. Chemical variation in lodgepole pine with sapwood/heartwood, stem height, and variety. Wood and Fiber Science 22 (1): 22-30.

Cato, S.; McMillan, L.; Donaldson, L.; Richardson, T.; Echt, C.; Gardner, R. 2006. Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression. Plant Molecular Biology 60: 565-581.

Chowdhury, M.Q.; Rashid, A.Z.M.M.; Newaz, M.S.; Alam, M. 2007. Effects of height on physical properties of wood of jhau (Casuarina equisetifolia). Australian Forestry 70 (1): 33-36.

Fengel, D.; Wegener, G. 1989. Isolation and Determination of Cellulose; Chemical Composition and Analysis of Wood. In Wood- Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co.

Gindl, W.; Teischinger, A. 2002. Axial compression strength of Norway spruce related to structural variability and lignin content. Composites Part A: Applied Science and Manufacturing 33 (12): 1623-1628.

Githiomi, J.K.; Kariuki, J.G. 2010. Wood basic density of Eucalyptus grandis from plantations in central rift valley, Kenya: Variation with age, height level and between sapwood and heartwood. Journal of Tropical Forest Science 22 (3): 281-286.

Gominho, J.; Lourenço, A.; Neiva, D.; Fernandes, L.; Amaral, M.E.; Duarte, A.P., Simoes, R.; Pereira, H. 2015. Variation of Wood Pulping and Bleached Pulp Properties Along the Stem in Mature Eucalyptus globulus Trees. BioResources 10 (4): 7808-7816.

ISO 3131: 1975. Wood-determination of density for physical and mechanical tests.

ISO 3787: 1976. Wood-determination of ultimate stress in compression parallel to grain.

ISO 4469: 1981. Wood-determination of radial and tangential shrinkage.

ISO 4858: 1982. Wood-determination of volumetric shrinkage.

ISO 4859: 1982. Wood-determination of radial and tangential swelling.

ISO 4860: 1982. Wood-determination of volumetric swelling.

ISO 554: 1976. Standard atmospheres for conditioning and/or testing; specifications.

Izekor, D.N.; Fuwape, J.A.; Oluyege, A.O. 2010. Effects of density on variations in the mechanical properties of plantation grown Tectona grandis wood. Archives of Applied Science Research 2 (6): 113-120.

Jorge, F.; Quilhó, T.; Pereira, H. 2000. Variability of fiber length in wood and bark in Eucalyptus globulus. IAWA Journal 21 (1): 41-48.

Jyske, T.; Mäkinen, H.; Saranpää, P. 2008. Wood density within Norway spruce stems. Silva Fennica 42 (3): 439-455.

Karasahin, H.; Tulukcu, M.; Sengun, S.; Nur, M. 2002. The Seed Productivity of Cones of Nordmann’s Fir (Abies nordmanniana (Stev.)Spach.). Technical bulletin no: 9, Forest Tree Seeds and Tree Breeding Research Directorate, Ankara, Turkey.

Khalil, H.A.; Hossain, M.S.; Rosamah, E.; Azli, N.A.; Saddon, N.; Davoudpoura, Y.; Islam M.N.; Dungani, R. 2015. The role of soil properties and it’s interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews 43: 1006-1015.

Kiaei, M. 2011. Variation in the Wood Physical and Mechanical Properties of Zelcova carpinifolia Trees along Longitudinal Direction, Middle-East Journal of Scientific Research 9 (2): 279-284.

Kiaei, M.; Farsi, M. 2016. Vertical variation of density, flexural strength and stiffness of Persian silk wood. Madera y Bosques 22 (1): 169-175.

Kord, B.; Kialashaki, A.; Kord, B. 2010. The within-tree variation in wood density and shrinkage, and their relationship in Populus euramericana. Turkish Journal of Agriculture and Forestry 34: 121-126.

Lachenbruch, B.; McCulloh, K.A. 2014. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist 204: 747-764.

Lachenbruch, B.; Moore, J.R.; Evans, R. 2011. Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence Size- and age-related changes in tree structure and function (eds F.C.C. Meinzer, B. Lachenbruch & T.E.E. Dawson), pp. 121 164. Springer Netherlands.

Langum, C.E.; Yadama, V.; Lowell, E.C. 2009. Physical and mechanical properties of young-growth Douglas-fir and western hemlock from western Washington. Forest Products Journal 59 (11): 37-47.

Longui, E.L.; Gondo, C.C.S.; Luiz de Lima, I.; Freitas, M.L.M.; Florsheim, S.M.B.; Zanatto, A.C.S.; Garcia, J.N. 2016. Some Properties of Astronium graveolens Wood Along the Stem. Floresta e Ambiente 23 (1): 142-149.

Lukašek, J.; Zeidler, A.; Barcik, Š. 2012. Shrinkage of Grand fir wood and its variability within the stem. Drvna industrija 63 (2): 121-128.

Machado, J.S.; Cruz, H.P. 2005. Within stem variation of Maritime pine timber mechanical properties. Holz als Roh-und Werkstoff 63 (2): 154-159.

Machado, J.S.; Louzada, J.L.; Santos, A.J.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simoes, M.S.; Pereira, H. 2014. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Materials and Design 56: 975-980.

Mahmud, S.Z.; Hashim, R.; Saleh, A.H.; Sulaiman, O.; Saharudin, N.I.; Ngah, M.L.; Masseat, K.; Husain, H. 2017. Physical and mechanical properties of juvenile wood from Neolamarckia cadamba planted in west Malaysia. Maderas-Cienc Tecnol 19 (2): 225-238.

Molteberg, D.; Høibø, O. 2006. Development and variation of wood density, kraft pulp yield and fiber dimensions in young Norway spruce (Picea abies). Wood Science and Technology 40: 173-189.

Neagu, R.C.; Gamstedt, E.K.; Bardage, S.L.; Lindström, M. 2006. Ultrastructural features affecting mechanical properties of wood fibers. Wood Material Science and Engineering 1: 146-170.

Pandey, K.K. 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71: 1969–1975.

Repola, J. 2006. Models for vertical wood density of Scots pine, Norway spruce and Birch stems, and their application to determine average wood density. Silva Fennica 40 (4): 673-685.

Rodrigo, B.G.; Esteban, L.G.; de Palacios, P.; Fernández, F.G.; Casasús, A.G. 2013. Variation throughout the tree stem in the physical-mechanical properties of the wood of Abies alba Mill. from the Spanish Pyrenees. Madera y Bosques 19 (2): 87-107.

Rosner, S. 2013. Hydraulic and biomechanical optimization in Norway spruce trunkwood – A review. IAWA Journal 34 (4): 365-390.

Rosner, S.; Karlsson B. 2011. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood. Trees 25: 289-299.

Rueda, R.; Williamson, G.B. 1992. Radial and vertical specific gravity in Ochroma pyramidale (Cav. ex Lam.) Urb. (Bombacaceae). Biotropica 24 (4): 512-518.

Saranpää, P. 2003. Wood density and growth. In J. R. Barnett and G. Jeronimidis (Eds.), Wood Quality and its Biological Basis. USA, CRC Press.

Shmulsky, R.; Jones, P.D. 2011. Forest Products and Wood Science. John Wiley & Sons.

TAPPI standard, 2007. T 204 cm-07, Solvent Extractives of Wood and Pulp.

TAPPI standard, 2011. T 222 om-11, Acid-Insoluble Lignin in Wood and Pulp.

TAPPI standard, 2012. T 257 cm-12, Sampling and Preparing Wood for Analysis.

Tavares, F.; Quilhó, T.; Pereira, H. 2011. Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globulus. Cerne 17 (1): 61-68.

Topaloglu, E.; Ay, N.; Altun, L.; Serdar, B. 2016. Effect of altitude and aspect on various wood properties of Oriental beech (Fagus orientalis Lipsky) wood. Turkish Journal of Agriculture and Forestry 40 (3): 397-406.

Usta, İ. 2004. The Effect of Moisture Content and Wood Density on the Preservative Uptake of Caucasian fir (Abies nordmanniana (Link.) Spach.) Treated with CCA. Turkish Journal of Agriculture and Forestry 28: 1-7.

Wang, E.; Chen, T.; Pang, S.; Karalus, A. 2008. Variation in anisotropic shrinkage of plantation-grown Pinus radiata wood. Maderas Ciencia y tecnología 10 (3): 243-249.

Wiedenhoeft, A.C.; Miller, R.B. 2005. Structure and function of wood. Handbook of wood chemistry and wood composites, 9-33.

Wise, L.E.; Murphy, M.; D’Addieco, A.A. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122 (2): 35-43.

Yu, M.; Cheng, X.; He, Z.; Wu, T.; Yin, Z. 2014. Longitudinal Variation of Ring Width, Wood Density and Basal Area Increment in 26-Year-Old Loblolly Pine (Pinus taeda) Trees. Tree-Ring Research 70 (2): 137-144.

Zeidler, A. 2012. Variation of wood density in Turkish hazel (Corylus colurna L.) grown in the Czech Republic. Journal of Forest Science 58 (4): 145-151.

Zobel, B.J.; Sprague, J.R. 2012. Juvenile wood in forest trees. Springer Science & Business Media.

Zobel, B.J.; van Buijtenen, J.P. 1989. Wood Variation and Wood Properties. In: Wood Variation: Its Causes and Control. Springer, Berlin Heidelberg.

Downloads

Published

2018-07-01

How to Cite

Topaloglu, E., & Erisir, E. (2018). Longitudinal variation in selected wood properties of oriental beech and caucasian fir. Maderas-Cienc Tecnol, 20(3), 403–416. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3135

Issue

Section

Article