Distinctive delignification with consecutive application of Geobacillus sp. 71 xylanase and Rhodococcus jostii rha1 lignin peroxidase

  • Aysegul Ozer
  • Sabriye Canakci
  • Gozde Gocmen
  • Ilhan Deniz
  • Huseyin Kirci
  • Onur Tolga Okan
  • Ali Osman belduz
Keywords: Bleaching, eucalypts, Kappa number, Kraft pulp, Pine

Abstract

In present study, single and consecutive applications of xylanase and lignin peroxidase were performed in an XOQP TCF sequence to bleach pine and eucalypts kraft pulp. The consecutive use of Geobacillus sp. strain 71 xylanase and Rhodococcus jostii RHA1 lignin peroxidase was more effective than the single uses. XyzGeo71 treatment (X) indicates a 9.76% and 28.52% reduction in kappa number for pine and eucalypts kraft pulps, respectively. LiPRHA1 treatment (X) showed a 7.88% and 20.9% reduction a in kappa number for pine and eucalypts kraft pulps, respectively. The consecutive treatment of XyzGeo71 and LiPRHA1  (X), however, indicated a 13.67% and 37.2% reduction in kappa number for pine and eucalypts kraft pulps, respectively. The results showed that delignification with the consecutive xylanase and lignin peroxidase treatment was very significant.

References

AHLAWAT, S.; BATTAN, B.; DHIMAN, S.S.; SHARMA, J.; MANDHAN, R.P. 2007. Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp. J Ind Microbiol Biotechnol 34: 763–770.

AHLAWAT, S.; MANDHAN, R.P.;DHIMAN, S.S. ; KUMAR, R. ; SHARMA, J. 2008. Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry. Appl Biochem Biotechnol 149: 287–293.

ARBELOA, M.; DE LESEUC, J.; GOMA, G. ; POMMİER, J.C. 1992. An evaluation of the potential of lignin peroxidases to improve pulps. Tappi J 75: 215-221.

BEG, Q.K.; KAPOOR, M.; MAHAJAN, L.; HOONDAL, G.S. 2001. Microbial xylanases and their industrial applications: A review. Appl Microbiol Biotechnol 56: 326–338.
BERMEK, H.; LI, K.; ERIKSSON, K.E. 2000. Pulp bleaching with manganese peroxidase and xylanase: a synergistic effect. Tappi J 83: 69-79.

BHOLAY, A.D.; BORKHATARIA BHAVNA, V.; JADHAV PRIYANKA, U.; PALEKAR KAVERI, S.; DHALKARI MAYURI, V.; NALAWADE, P.M. 2012. Bacterial lignin peroxidase: A tool for bioleaching and biodegradation of industrial effluents. Universal Journal of Environmental Research and Technology 2: 58-64.

BİM, M.A. ; FRANCO, T.T. 2000. Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J Chromatogr B Biomed Sci Appl 743: 349–356.

BISSOON, S.; CHRISTOV, L. ; SINGH, S. 2002. Bleach boosting effects of purified xylanase from Thermomyces lanuginosus SSBP on bagasse pulp. Process Biochem 37: 567–572.

BUCHERT, J.; RANUA, M.; KANTELİNEN, A. ; VİİKARİ, L. 1992. The Role of 2 Trichoderma reesei xylanases in the bleaching of pine kraft pulp. Appl Microbiol Biotechnol 37: 825–829.

CANAKCI, S.; CEVHER, Z.; TOKGOZ, M.; BAHAR, F.; KACAGAN, M.; SAL, F.A. ; BELDUZ, A.O. 2012. Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71. World J Microbiol Biotechnol 28: 1981–1988.

CANAKCI, S.; INAN, K.; KACAGAN, M.; BELDUZ, A.O. 2007.Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey. J Microbiol Biotechnol 17:1262–1270.

CARVALHO, M.E.; MONTEIRO, M.C.; BON, E.P.; SANT’ANNA, G.L. 1998. Production and characterization of Phanerochaete chrysosporium lignin peroxidases for pulp bleaching. Appl Biochem Biotechnol 70-72: 955-966.

CHOUDHURY, B.; CHOUDHURY, S.; SINGH, S.N. ; GHOSH, P. 2006. Production of xylanase of Bacillus coagulans and its bleaching potential. World J Microbiol Biotechnol 22: 283–288.

COMLEKCIOGLU, U.; TUTUS, A.;CICEKLER, M.; GUNES, M.; AYGAN, A. 2014. Application of recombinant xylanase from Orpinomyces sp.in elemental chlorine-free bleaching of kraft pulps. Rom Biotechnol Lett 19: 8941–8950.

FERRE, A.;ROSAL, A.; VALLS, C.; RONCERO, B.; RODRIGEZ, A. 2011. Modelling hydrogen peroxide bleaching of soda pulp from oil-palm empty fruit bunches. Bioresources 6: 1298-1307.

GARG, G.; DHIMAN, S.S.; MAHAJAN, R.; KAUR, A.; SHARMA, J. 2011. Bleach-boosting effect of crude xylanase from Bacillus stearothermophilus SDX on wheat straw pulp. N Biotechnol 28: 58–64.

GOODWIN, D. C.;AUST, S. D. ; GROVER, T.A. 1995. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalysed oxidation. Biochemistry 34: 5060-5065.

KAUR, A.; MAHAJAN., R.; SINGH, A.; GARG, G.; SHARMA, J. 2010. Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101: 9150–9155.

KIAEI, M.; TAJIK, M.; VAYSI, R. 2014. Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas-Cienc Tecnol 16(3): 313-322.

KULKARNI, N.; RAO, M. 1996. Application of xylanase from alkaliphilic thermophilic Bacillus sp. NCIM 59 in biobleaching of bagasse pulp. J Biotechnol 51: 167–173.

MADLALA, A.M.; BISSOON, S.; SİNGH, S.; CHRISTOV, L. 2001. Xylanase-induced reduction of chlorine dioxide consumption during elemental chlorine-free bleaching of different pulp types. Biotechnol Lett 23: 345–351.

MILLER, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428.

NAGAR, S.; JAİN, R.K.;THAKUR, V.V.; GUPTA,V.K. 2012. Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S. 3 Biotech 3: 277–285.

OKAN, O.T.; DENIZ, I.; TIRYAKI, S. 2015. Application of artificial neural netmowrks for predicting tensile index and brigthness in bleaching pulp. Maderas- Cienc Tecnol 17(3): 571-584.

RONCERO, M.B.; TORRES, M.B.; COLOM, J.F.; VİDAL,T. 2003a. TCF bleaching of wheat straw pulp using ozone and xylanase. Part A: Paper quality assessment. Bioresour Technol 87: 305–314.

RONCERO, M.B.; TORRES, M.B.; COLOM, J.F.; VIDAL,T. 2003b. Effect of xylanase on ozone bleaching kinetics and properties of eucalypts kraft pulp. J Chem Technol Biotechnol 78: 1023–1031.

SALEEM, M.; TABASSUM, M.R.; YASMIN, R.; IMRAN, M. 2009. Potential of xylanase from thermophilic Bacillus sp. XTR-10 in biobleaching of wood kraft pulp. Int Biodeterior Biodegrad 63:1119–1124.

SENTHILKUMAR, S.R.; DEMPSEY, M.; KRISHAN, C. ; GUNASEKARAN, P. 2008. Optimization of biobleaching of paper pulp in an expanded bed bioreactor with immobilized alkali stable xylanase by using response surface methodology. Bioresour Technol 99:7781–7787.

SHARMA, A.; THAKUR, V.V.; SHRIVASTAVA, A.; JAIN, R.K.; MATHUR, R.M.; GUPTA, R.; KUHAD, R.C. 2014. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. Bioresour Technol 169:96-102.

SHARMA, P.; SOOD, C.; SINGH, G. ;CAPALASH, N. 2015. An eco-friendly process for biobleaching of eucalypts kraft pulp with xylanase producing Bacillus halodurans. Journal of Cleaner Production 87:966-970.

TIEN, M.; KIRK, T.K. 1983. Lignin-degrading enzymes from himenomycete Phanerochaete chrysosporium. Burds Science 221: 661–663.

VIIKARI, L.; RANUA, M.; KANTELINEN, A.; SUDQUIST, J. ; LINKO, M. 1986. Bleaching with enzymes. In: 3rd International Conference on Biotechnology in the Pulp and Paper Industry, pp. 67–69. Stockholm, Sweden.

ZHAO, J.; Lİ, X. ; QU, Y. 2006. Application of enzymes in producing bleached pulp from wheat straw. Bioresour Technol 97:1470–1476.
Published
2018-03-03
How to Cite
Ozer, A., Canakci, S., Gocmen, G., Deniz, I., Kirci, H., Tolga Okan, O., & Osman belduz, A. (2018). Distinctive delignification with consecutive application of Geobacillus sp. 71 xylanase and Rhodococcus jostii rha1 lignin peroxidase. Maderas. Ciencia Y Tecnología, 20(4). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/3167