A new approach to wood protection: Preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites

  • K. S. Shiny
  • R. Sundararaj
  • N. Mamatha
  • B. Lingappa
Keywords: Antitermite activity, Biological synthesis, brown-rot fungi, plant extracts, white-rot fungi, wood protection

Abstract

Nanoparticles have addressed many challenges in science and technology and wood science research is one such field that has benefitted from application of metal nanoparticles. The metal nanoparticles that are commercially available for wood protection are synthesised by physical and chemical methods which produces toxic by-products and are expensive. The current study deals with a new approach for utilization of metal nanoparticle for wood protection in an ecofriendly and cost effective way. Metal nanoparticles were synthesised using plant extracts that are known to have wood preservative properties. The synergistic effects of the intrinsic property of plant extracts along with the biocidal property of metal nanoparticles were utilized. Copper oxide nanoparticles were synthesised using leaf extracts of Neem (Azadirachta indica), Pongamia (Pongamia pinnata), Lantana (Lantana camara) and extract of orange peel (Citrus reticulata). The effectiveness of the synthesised plant extract and copper oxide nanoparticle formulation is tested against wood decay fungi using agar mixed with the test substance.  Graveyard test is employed to assess the effect of the copper oxide nanoparticle formulation against termites. Preliminary results are promising and studies are progressing to develop a stable and environmentally benign wood preservative formulation of metal nanoparticles and plant extracts.

References

Akhtari, M.; Arefkhani, M. 2010. Application of Nanotechnology in Wood. IRG/WP 10-30542, Biarritz, France.

Ansilin, S.; Kavya Nair, J.; Aswathy, C.; Rama, V.; Peter, J.; Jeyachynthaya Persis, J. 2016. Green synthesis and characterisation of copper oxide nanoparticles using Azadirachta indica (Neem) leaf aqueous extract. J Nanosci Tech 2(5): 221–223.

Cai, W.; Gao, T,; Hong, H.; Sun, J. 2008. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32.

Cao, G. 2004. Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London.

Chan, W.C.W.; Nie, S. 1998. Quantum Dot Bioconjugates for Ultrasensitive. Nonisotopic Detection Science 281: 2016–8.

Clausen, C.A. 2007. Nanotechnology: Implications for the wood preservation Industry. The 38th Annual Meeting of IRG, 20-24 May. Jackson Hole, WY

Clausen, C.A.; Green, F.; Kartal, S.N. 2010. Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Res Lett 5:1464–1467.

Colvin, V.L.; Schlamp, M.C.; Alivisatos, A. 1994. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370: 354–357.

Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent: current methods and future trends: a review. J Med Plants Res 4: 104–111.

Dhillon, G.S.; Brar, S.K. Kaur, S.; Verma, M. 2012. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32 :49–73.

Dujardin, E.; Peet, C.; Stubbs, G.; Culver, J.N.; Mann, S. 2003. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3: 413–417.

Goodsell, D. 2004. Bionanotechnology: Lessons from Nature. Willey-Less, New Jersey, USA. 1–8.

Gupta, H.; Sharma, K.R.; Sharma, J.N. 2017. Fungal Inhibition in Wood Treated with Lantana camara L. Extract. In: Pandey K, Ramakantha V, Chauhan S, Arun Kumar A (eds) Wood is Good. Springer. Singapore. 269-276.

Hulkoti, N.I.; Taranathm, T.C. 2014. Biosynthesis of nanoparticles using microbes-a review. Coll Surf B: Biointerf 121: 474–483.

Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650.

IS 4833.1993. Methods for field testing of preservatives in wood (first revision), Indian standard. Reaffirmed in 2008.

Kartal, S.N.; Green, F.; Clausen, C.A. 2009. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites. International Biodeterioration & Biodegradation 63: 490-495.

Khan, S.A.; Shahid, S.; Sajid, M.R.; Noreen, F.; Kanwal, S. 2017. Biogenic Synthesis of CuO Nanoparticles and their Biomedical Applications: A Current Review. Int J Adv Res 5(6): 925-946.

Klefenz, H. 2004. Nanobiotechnology: From Molecules to Systems. Eng Life Sci 4: 3.211–218. doi:10.1002/elsc.200402090.

Lee, H.J.; Lee, G.; Jang, N.R.; Yun, J.H.; Song. J.Y.; Kim, B.S. 2011. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1(1):371–374.

Lee, H.Y.; Li. Z.; Chen, K.; Hsu, A.R.; Xu, C.; Xie, J.; Sun, S.; Chen, X. 2008. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD) conjugated radio labeled iron oxide nanoparticles. J Nucl Med 49 ;8: 1371–1379.

Machado, G.O.; Cookson, L.J.; Christoforo, A.L.; Polito, W.L.; Silva, M.R; Junior, C.C.; Lahr, F.A.R. 2013. Wood preservation based on Neem oil:Evaluation of fungicidal and termiticidal Effectiveness. For Prod J 63: 202-206.

Macias, F.A.; Torres, A.; Maya, C.C.; Fernandez, B. 2005. Natural biocides from citrus waste as new wood preservatives. Fourth World Congress on Allelopathy, Charles Sturt University,Wagga, NSW, Australia.

Majumder, D.R. 2012. Bioremediation:Copper Nanoparticles from Electronic-waste. International Journal of Engineering Science and Technology 4(10):4388-4389.

Mishra, P.K.; Giagli, K.; Tsalagkas, D.; Mishra, H.; Talegaonkar, S.; Gry, V.; Wimmer, R. 2018. Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology. Recent Patents on Nanotechnology 12:13-21.

Mittal, A.K.; Chisti, Y.; Banerjee, U.C. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31: 346–356.

Moghaddam, A.B.; Namvar, F.; Moniri, M.; Tahir, S.; Azizi, P.M.; Mohamad, R. 2015. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565.

Nair, S.; Giridhar, B.N.; Pandey, K.K. 2018. UV stabilization of wood by nano metal oxides dispersed in propylene glycol. Journal of Photochemistry & Photobiology, B: Biology 183:1–10.

Nair, S.; Pandey, K.K.; Giridhar, B.N.; Vijayalakshmi, G. 2017. Decay resistance of rubberwood (Hevea brasiliensis) impregnated with ZnO and CuO nanoparticles dispersed in propylene glycol. International Biodeterioration & Biodegradation 122: 100-106.

Nene, Y.; Thapilyal, L. 2000. Poisoned food technique of fungicides in plant disease control (3rd eds). New Delhi: Oxford and IBH Publishing Company.

Pissuwan, D.; Valenzuela, S.M.; Cortie, M.B. 2006. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24: 62–67.

Schrofel, A.; Kratosova, G.; Krautova, M.; Dobrocka, E.; Vavra, I. 2011. Biosynthesis of gold nanoparticles using diatoms–silica-gold and EPS-gold bionanocomposite formation. J Nanoparticle Res 13: 3207–3216.

Singaravelu, G.; Arockiamary, J.S.; Ganesh Kumar, V.; Govindaraju, K. 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll Surf B: Biointerf 57: 97–101.

Sotannde, O.A.; Yager, G.O.; Zira, B.D.; Usman, A. 2011. Termiticidal Effect of Neem Extracts on the Wood of Khaya senegalensis. Research Journal of Forestry 5: 128-138.

Sundararaj. R; Remadevi, O.K.; Muthukrishnan, R. 2003. Comparatice efficacy of some insecticides in ground contact against subterranean termites. Pestology17:2:16-18.

Sundrarajan, M.; Ambika, S,; Bharathi, K. 2015. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Advanced Powder Technology 26:1294-1299.

Tan, M.; Wang, G.; Ye, Z.; Yuan, J. 2006. Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling. Journal of Luminescence 117:1:20-28.

Tascioglu, C.; Mesut, Y.; Selim, S.; Caglar, A. 2013. Antifungal properties of some plant extracts used as wood preservatives. Int Biodeterior Biodegradation 85(1):23-28.

Terzi, E.; Kartal, S.N.; Yılgör, N.; Rautkari, L.; Yoshimura, T. 2016. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. Int Biodeterior Biodegradation 107:77–87.

Venmalar, D. 2017. Screening of Oils of Pongamia pinnata Linn., Jatropha curcas Linn. and Simarouba glauca D.C. for developing Eco-Friendly Wood Preservatives.

Wood is Good Current Trends and Future Prospects in Wood Utilization Pandey K, Ramakantha V, Chauhan S, Arun Kumar A (eds) Springer. Singapore. 261-268.

Vijayaraghavan, K.; Ashokkumar, T. 2017. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering 5:4866–4883.

Yu, W.; Xie, H. 2012. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials Article ID 435873. https://doi.org/10.1155/2012/435873.
Published
2018-11-19
How to Cite
Shiny, K. S., Sundararaj, R., Mamatha, N., & Lingappa, B. (2018). A new approach to wood protection: Preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas. Ciencia Y Tecnología, 21(3). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/3476