The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood

  • Agnieszka Laskowska
Keywords: Chromatic coordinates, densification, Fagus sylvatica, lightness, Quercus robur

Abstract

The study examined the influence of ultraviolet radiation on the colour of thermo-mechanically modified beech (Fagus sylvatica ) and oak (Quercus robur). The wood colour parameters were measured using the mathematical CIE L*a*b* and L*C*h colour space models. The higher the temperature of thermo-mechanical treatment, the least susceptible beech and oak wood was to a change in L*, a* and b* under the influence of light irradiation. The greatest changes in the colour of non-densified and densified beech and oak wood occurred after 20 h of light irradiation. The higher the temperature of thermo-mechanical treatment, the smaller were the total changes in the colour of beech and oak wood under the influence of ultraviolet radiation. The total changes in the colour of beech densified at temperatures of 100°C and 150°C that took place under the influence of ultraviolet radiation were twice as high as in the case of densified oak wood. The colour of oak wood modified at a temperature of 200°C did not change significantly in 300 h of light irradiation.

Downloads

Download data is not yet available.

References

AHMED, S.A.; MORÉN, T.; HAGMAN, O.; CLOUTIER, A.; FANG, CH.-H.; ELUSTONDO, D. 2013. Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression. J Mater Sci 48 (24): 8571–8579.

ALÉN, R.; KOTILAINEN, R.; ZAMAN, A. 2002. Thermochemical behavior of Norway spruce (Picea abies) at 180-225°C. Wood Sci Technol 36 (2): 163–171.

AYADI, N.; LEJEUNE, F.; CHARRIER, F.; CHARRIER, B.; MERLIN, A. 2003. Color stability of heat treated wood during artificial weathering. Holz Roh Werkst 61 (3): 221–226.

BEKHTA, P.; NIEMZ, P. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57 (5): 539–546.

BEKHTA, P.; PROSZYK, S.; KRYSTOFIAK, T. 2014a. Colour in short term thermo-mechanically densified veneer of various wood species. Eur J Wood Prod 72 (6): 785–797.

BEKHTA, P.; PROSZYK, S.; LIS, B.; KRYSTOFIAK, T. 2014b. Gloss of thermally densified alder (Alnus glutinosa Goertn.), beech (Fagus sylvatica L.), birch (Betula verrucosa Ehrh.), and pine (Pinus sylvestris L.) wood veneers. Eur J Wood Prod 72 (6): 799–808.

BEKHTA, P.; KRYSTOFIAK, T. 2016. The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas-Cienc Tecnol 18 (1): 79–90.

BELT, T.; RAUTKARI, L.; LAINE, K.; HILL, C.A.S. 2013. Cupping behaviour of surface densified Scots pine wood: The effect of process parameters and correlation with density profile characteristics. J Mater Sci 48 (18): 6426–6430.

BLOMBERG, J.; PERSSON, B.; BLOMBERG, A. 2005. Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Sci Technol 39 (5): 339–350.

BRISCHKE, C.H.; WELZBACHER, CH.R.; BRANDT, K.; RAPP, A.O. 2007. Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples. Holzforschung 61 (1): 19–22.

CHANG, T.C.; CHANG, H.T.; WU, C.L.; CHANG, S.T. 2010. Influences of extractives on the photodegradation of wood. Polym Degrad Stab 95: 516–521.

CRUZ, N.; BUSTOS, C.A.; AGUAYO, M.G.; CLOUTIER, A.; CASTILLO, R. 2018. Impact of the chemical composition of Pinus radiata wood on its physical and mechanical properties following thermo-hygromechanical densification. BioResources 13 (2): 2268–2282.

DIOUF, P.N.; STEVANOVIC, T.; CLOUTIER, A.; FANG, CH.-H.; BLANCHET, P.; KOUBAA, A.; MARIOTTI, N. 2011. Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257: 3558–3564.

DOGU, D.; TIRAK, K.; CANDAN, Z.; UNSAL, O. 2010. Anatomical investigation of thermally compressed wood panels. BioResources 5 (4): 2640–2663.

ESTEVES, B.; MARQUES, V.; DOMINGOS, A.; PEREIRA, H. 2013. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc Tecnol 15 (2): 245–258.

FANG, CH.-H.; MARIOTTI, N.; CLOUTIER, A.; KOUBAA, A.; BLANCHET, P. 2011. Densification of wood veneers by compression combined with heat and steam. Eur J Wood Prod 70: 155-163.

FANG, CH.-H.; CLOUTIER, A.; JIANG, Z.-H.; HE, J.-Z.; FEI, B.-H. 2019. Improvement of wood densification process via enhancing steam diffusion, distribution, and evaporation. BioResources 14 (2): 3278–3288.

GAŠPARÍK, M.; GAFF, M.; ŠAFAŘÍKOVÁ, L.; VALLEJO, C.R.; SVOBODA, T. 2016. Impact bending strength and Brinell hardness of densified hardwoods. BioResources 11 (4): 8638–8652.

GIERLINGER, N.; JACQUES, D.; GRABNER, M.; WIMMER, R.; SCHWANNINGER, M.; ROZENBERG, P.; PÂQUES, L.E. 2004. Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees 18 (1): 102–108.

GONZÁLEZ-PEÑA, M.M.; HALE, M.D.C. 2009. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 2: Property predictions from colour changes. Holzforschung 63 (4): 394–401.

HILL, C.A.S. 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd, Chichester, UK.

HON, D.N.-S.; GLASSER, W. 1979. On possible chromophoric structures in wood and pulps. Polym Plast Technol Eng 12 (2): 159–179.

HUANG, X.; KOCAEFE, D.; KOCAEFE, Y.; BOLUK, Y.; PICHETTE, A. 2012. A spectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering. Appl Surf Sci 258 (14): 5360–5369.

ISO 7724-3. 1984. Paints and varnishes - Colorimetry - Part 3: Calculation of colour differences. International Organization for Standardization, Geneva, Switzerland.

ISO 13061-1. 2014. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. International Organization for Standardization, Geneva, Switzerland.

ISO 13061-2. 2014. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. International Organization for Standardization, Geneva, Switzerland.

İMIRZI, H.Ö.; ÜLKER, O.; BURDURLU, R. 2014. Effect of densification temperature and some surfacing techniques on the surface roughness of densified scots pine (Pinus sylvestris L.). BioResources 9 (1): 191–209.

JOHANSSON, D.; MORÉN, T. 2006. The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh Werkst 64 (2): 104–110.

JIANG, J.; LU, J.; HUANG, R.; LI, X. 2009. Effects of time and temperature on the viscoelastic properties of Chinese fir wood. Drying Technology 27 (11): 1229–1234.
KUTNAR, A.; KAMKE, F.A.; SERNEK, M. 2009. Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43 (1): 57–68.

KUTNAR, A.; KAMKE, F.A. 2012. Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci Technol 46 (5): 953–964.

LAINE, K.; RAUTKARI, L.; HUGHES, M. 2013a. The effect of process parameters on the hardness of surface densified Scots pine solid wood. Eur J Wood Prod 71 (1): 13–16.

LAINE, K.; RAUTKARI, L.; HUGHES, M.; KUTNAR, A. 2013b. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Eur J Wood Prod 71 (1): 17–23.

LAINE, K.; SEGERHOLM, K.; WÅLINDER, M.; RAUTKARI, L.; ORMONDROYD, G.; HUGHES, M.; JONES, D. 2014. Micromorphological studies of surface densified wood. J Mater Sci 49 (5): 2027–2034.

LAINE, K.; SEGERHOLM, K.; WÅLINDER, M.; RAUTKARI, L.; HUGHES, M. 2016. Wood densification and thermal modification: Hardness, set-recovery and micromorphology. Wood Sci Technol 50 (5): 883–894.

LASKOWSKA, A.; MARCHWICKA, M.; BORUSZEWSKI, P.; WYSZYŃSKA, J. 2018. Chemical composition and selected physical properties of oak wood (Quercus robur L.) modified by cyclic thermo-mechanical treatment. BioResources 13 (4): 9005–9019.

LASKOWSKA, A.; SOBCZAK, J. W. 2018. Surface chemical composition and roughness as factors affecting the wettability of thermo-mechanically modified oak (Quercus robur L.). Holzforschung 72 (11): 993–1000.

MILLER, S.A.; HAMILTON, S.L.; WESTER, U.G.; CYR, W.H. 1998. An analysis of UVA emissions from sunlamps and the potential importance for melanoma. Photochem Photobiol 68 (1): 63–70.

MITSUI, K.; TAKADA, H.; SUGIYAMA, M.; HASEGAWA, R. 2001. Changes in the properties of light-irradiated wood with heat treatment. Part 1. Effect of treatment conditions on the change in color. Holzforschung 55: 601–605.

NAVI, P.; GIRARDET, F. 2000. Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54 (3): 287–293.

NIMZ, H.H. 1973. Chemistry of potential chromophoric groups in beech lignin. Tappi J 56 (5): 124–126.

PANDEY, K.K. 2005a. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym Degrad Stab 87 (2): 375–379.

PANDEY, K.K. 2005b. Study of the effect of photo-irradiation on the surface chemistry of wood. Polym Degrad Stab 90 (1): 9–20.

PANDEY, K.K.; VUORINEN, T. 2008. Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93 (12): 2138–2146.

PASTORE, T.C.M.; SANTOS, K.O.; RUBIM, J.C. 2004. A spectrocolorimetric study on the effect of ultraviolet irradiation of four tropical hardwoods. Bioresour Technol 93 (1): 37–42.

PAŘIL, P.; BRABEC, M.; MAŇÁK, O.; ROUSEK, R.; RADEMACHER, P.; ČERMÁK, P.; DEJMAL A. 2014. Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. Eur J Wood Prod 72 (5): 583–591.

PELIT, H.; SÖNMEZ, A.; BUDAKÇI, M. 2014. Effects of ThermoWood® Process Combined with Thermo-Mechanical Densification on some Physical Properties of Scots Pine (Pinus sylvestris L.). BioResources 9 (3): 4552–4567.

PELIT, H.; BUDAKÇI, M.; SÖNMEZ, A. 2016. Effects of Heat Post-Treatment on Dimensional Stability and Water Absorption Behaviours of Mechanically Densified Uludağ Fir and Black Poplar Woods. BioResources 11 (2): 3215–3229.

PERSZE, L.; TOLVAJ, L. 2012. Photodegradation of wood at elevated temperature: colour change. J Photochem Photobiol B 108: 44–47.

PÉTRISSANS, A.; YOUNSI, R.; CHAOUCH, M.; GÉRARDIN, P.; PÉTRISSANS, M. 2014. Wood thermodegradation: experimental analysis and modeling of mass loss kinetics. Maderas-Cienc Tecnol 16 (2): 133–148.

POPESCU, M.-C.; LISA, G.; FROIDEVAUX, J.; NAVI, P.; POPESCU, C.-M. 2014. Evaluation of the thermal stability and set recovery of thermo-hydro-mechanically treated lime (Tilia cordata) wood. Wood Sci Technol 48 (1): 85–97.

RAUTKARI, L.; PROPERZI, M.; PICHELIN, F.; HUGHES, M. 2009. Surface modification of wood using friction. Wood Sci Technol 43 (3): 291–299.

RAUTKARI, L.; PROPERZI, M.; PICHELIN, F.; HUGHES, M. 2010. Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci Technol 44 (4): 679–691.

RAUTKARI, L.; LAINE, K.; LAFLIN, N.; HUGHES, M. 2011. Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. J Mater Sci 46 (14): 4780–4789.

RAUTKARI, L.; LAINE, K.; KUTNAR, A.; MEDVED, S.; HUGHES, M. 2013. Hardness and density profile of surface densified and thermally modified Scots pine in relation to degree of densification. J Mater Sci 48 (6): 2370–2375.

SALMÉN, L. 1982. Temperature and water induced softening behaviour of wood fiber based materials. The Royal Institute of Technology, Stockholm, Sweden.
SCHREPFER, V.; SCHWEINGRUBER, F.H. 1998. Anatomical structures in reshaped press-dried wood. Holzforschung 52 (6): 615–622.

TOLVAJ, L.; MITSUI, K. 2010. Correlation between hue angle and lightness of light irradiated wood. Polym Degrad Stab 95: 638–642.

TOLVAJ, L.; NEMETH, R.; PASZTORY, Z.; BEJO, L.; TAKATS, P. 2014. Colour Stability of Thermally Modified Wood during Short Term Photodegradation. BioResources 9 (4): 6644–6651.

TU, D.; SU, X.; ZHANG, T.; FAN, W.; ZHOU, Q. 2014. Thermo-mechanical densification of Populus tomentosa var. tomentosa with low moisture content. BioResources 9 (3): 3846–3856.

ÜLKER, O.; İMIRZI, Ö.; BURDURLU, E. 2012. The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris L.). BioResources 7 (4): 5581–5592.

WAGENFÜHR, R. 2007. Holzatlas. Fachbuchverlag Leipzig im Carl Hanser Verlag, München, Germany.

WELZBACHER, C.R.; WEHSENER J.; RAPP A.O.; HALLER P. 2008. Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale – Dimensional stability and durability aspects. Holz Roh Werkst 66: 39–49.

XU, X.; TANG, Z. 2012. Vertical compression rate profile and dimensional stability of surface-densified plantation poplar wood. Lignocellulose 1 (1): 45–54.

YAZAKI, Y.; COLLINS, P.J.; MCCOMBE B. 1994. Variations in hot water extractives content and density of commercial wood veneers from blackbutt (Eucalyptus pilularis). Holzforschung 48 (s1): 107–111.

ZHAN, J.-F.; AVRAMIDIS, S. 2016. Needle fir wood modified by surface densification and thermal post-treatment: Hygroscopicity and swelling behavior. Eur J Wood Prod 74 (1): 49–56.
Published
2019-09-02
How to Cite
Laskowska, A. (2019). The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood. Maderas. Ciencia Y Tecnología, 22(1). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/3828
Section
Article