Mechanical behavior of dowel connection for timber-concrete composite rural bridges

  • André Filipe Silva Marques
  • Carlos Eduardo Jesus Martins
  • Alfredo Manuel Pereira Geraldes Dias
Keywords: Composite Structures, Timber-Concrete, Timber Structures, Bridges, Dowel connection, TCC connections

Abstract

This study focuses on the evaluation of the mechanical behavior of two types of connections for intended use in rural Timber‑Concrete Composite traffic bridges. The two connection types used were the “X” type connection – XD and the dowel type connection – PD. Firstly, static shear tests in small-scale specimens were performed in both connection types and higher results were obtained for the XD series, both for stiffness and load carrying capacity. Secondly, the PD connection was chosen, based on practical and economical aspects, for further testing also in small-scale specimens, including cyclic tests. The influence of the number of cycles in the connection stiffness and load carrying capacity was evaluated. It was concluded that the load carrying capacity increased after the application of a pre-defined number of load cycles and that the connection stiffness increased 80.6% and 34.1% after 10,000 and 1,000 cycles, respectively, for different applied load levels. Also the increase of load level in the cyclic tests affected the performance of the connection, leading to a decrease in stiffness.

Downloads

Download data is not yet available.

References

Aldi, P.; Kuhlmann, U. 2010. Fatigue strength of timber-concrete composite bridges: determination of a S-N line for the grooved connection and the "X-connector". Proceedings of the 11th World Conference on Timber Engineering. Trento, Italy.

Calil, J. 2006. Manual de Projeto e Construção de Pontes de Madeira. São Carlos, Brazil, LaMEM - Laboratório de Madeiras e de Estruturas de Madeira.

Calil, J.; Pigozzo, J. C.; Lahr, F. A. R. 2004. The first composed log-concrete deck bridge in Brazil. World Conference on Timber Engineering. Helsinki, Finland.

CEN. 1991. EN 26891 - Timber Structures - Joints made with mechanical fasteners - General principles for the determination of strength and deformation caracteristics. Brussels, Comité Européen de Normalisation.

CEN. 2002. prEN 1991-2: Eurocode 1 - Actions on structures. Part 2: Traffic loads on bridges. Brussels, Comité Européen de Normalisation.

CEN (2004a). EN 1992-1-1: Eurocode 2 - Design of concrete structures. Part 1-1: General rules and rules for buildings. Brussels, Comité Européen de Normalization.

CEN. 2004b. EN 1995-2: Eurocode 5 - Design of Timber Structures. Part 2: Bridges. Brussels, Belgium, Comité Européen de Normalisation.

CSA (2016). S6-14: Canadian Highway Bridge Design Code. Ontario, Canada, CSA Group: 875.

Dias, A.; Skinner, J.; Crews, K.; Tannert, T. 2016. Timber-concrete-composites increasing the use of timber in construction. European Journal of Wood and Wood Products 74(3): 443-451.

Dias, A. M. P. G.; Machado, J. S.; Santos, P. 2014. Uso de produtos de madeira de alto desempenho em aplicações estruturais. JPEE 2014 - 5as Jornadas Portuguesas de Engenharia de Estruturas, Lisboa, Portugal.

Dias, A. M. P. G.; Martins, A. R. D.; Simoes, L. M. C.; Providencia, P. M.; Andrade, A. A. M. 2015. Statistical analysis of timber-concrete connections - Mechanical properties. Computers & Structures 155: 67-84.

Döhrer, A.; Rautenstrauch, K. 2006. Connectors for timber-concrete composite-bridges. 39th Meeting of Working Commission W18—Timber Structures, International Council for Research and Innovation in Building and Construction (CIB), Florence, Italy.

Gang Hu, W.; Yuan Guan, H. 2019. Study on compressive stress relaxation behavior of beech based on the finite element method. Maderas. Ciencia y Tecnologia 21(1): 15 24.

Hermoso, E.; Fernández-Golfín, J.; Conde, M.; Troya, M. T.; Mateo, R.; Cabrero, J. 2015. Caracterización de la Madera Aserrada de Pinus radiata modificada térmicamente. Maderas. Ciencia y Tecnologia 17(3): 493-504.

Knapic, S.; Santos, J.; Santos, J.; Pereira, H. 2018. Natural durability assessment of thermo-modified young wood of eucalyptus. Maderas. Ciencia y tecnología 20(3): 489 498.

Mäkipuro, R.; Tommola,J.; Salokangas, L.; Jutila, A. (1996). Wood-Concrete Composite Bridges. Nordic Timber Bridge Project. Stockholm, Sweden, Nordic Timber Council.

Marques, A. F. S.; Martins, C. E. J.; Dias, A. M. P. G.; Costa, R. J. T.; Morgado, T. F. M. 2016. Assessment of Reuse Potential of Maritime Pine Utility Poles for Structural Applications after Removal from Service. BioResources 11(4): 9340-9349.

Martins, C.; Dias, A. 2012. Bending Strength and Stiffness of Portuguese Maritime Pine Utility Poles. Forest Products Journal 62(2): 114-120.

Martins, C.; Dias, A. M. P. G.; Costa, R.; Santos, P. 2016. Environmentally friendly high performance timber–concrete panel. Construction and Building Materials 102, Part 2: 1060-1069.

Martins, C. E. J.; Dias, A. M. P. G.; Marques, A. F. S.; Dias, A. M. A. 2017. Non-Destructive Methodologies for Assessment of the Mechanical Properties of New Utility Poles. BioResources 12(2): 2269-2283.

Morgado, T. F. M.; Dias, A. M. P. G.; Machado, J. S.; Negrão, J. H.; Marques, A. F. S. 2017. Grading of Portuguese Maritime Pine Small-Diameter Roundwood. Journal of Materials in Civil Engineering 29(2): 1-7.

Molina, J. C. 2008. Análise do comportamento dinâmico da ligação formada por barras de aço coladas para tabuleiros mistos de madeira e concreto para pontes. Ph.D. Thesis, University of São Paulo, São Paulo, Brasil.

Rautenstrauch, K.; Mueller, J.; Simon, A. 2010. The first timber-concrete composite road bridge in Germany. World Conference on Timber Engineering, Trento, Italy.

Rodrigues, J.; Providência, P.; Dias, A. 2010. Use of composite timber-concrete bridges solutions in Portugal. International Conference on Timber Bridges (ICTB 2010), Norway.

Rodrigues, J. N.; Dias, A. M. P. G.; Providência, P. 2013. Timber-Concrete Composite Bridges: State-of-the-Art Review. BioResources 8(4): 6630-6649.
RTA. 2008. Timber Bridge Manual. Timber concrete composite bridges, RTA - Roads and Traffic Authority of NSW.

Sebastian, W.M.; Bell, O.G.A.; Martins, C.; Dias, A.M.P.G. 2017. Experimental evidence for effective flexural-only stiffnesses to account for nonlinear flexural-slip behaviour of timber-concrete composite sections. Construction and Building Materials 149: 481-496.

Soriano, J.; Mascia, N. T. 2009. Timber-concrete composite structures: a rational technique for bridges of vicinal roads. Ciencia Rural 39(4): 1260-1269.

Tommola, J.; Salokangas, L.; Jutila, A. 1999. Tests on shear connectors. Nordic Timber Bridge Project. Stockholm, Sweden, Nordic Timber Council.
Published
2019-09-02
How to Cite
Silva Marques, A., Jesus Martins, C., & Geraldes Dias, A. M. (2019). Mechanical behavior of dowel connection for timber-concrete composite rural bridges. Maderas. Ciencia Y Tecnología, 22(1). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/3840
Section
Article