Effect of thermal treatment variables on the thermogravimetric properties of eucalypt wood

Authors

  • Déborah Nava Soratto
  • Carlos Miguel Simões da Silva
  • Benedito Rocha Vital
  • Angélica de Cássia Oliveira Carneiro
  • Juliana Jerásio Bianche
  • Walter Torezani Neto Boschetti Neto Boschetti
  • Thaís Pereira Freitas
  • Juliana Ceccato Ferreira

Keywords:

Eucalyptus grandis, chemical composition, mass loss, thermally treated wood, thermogravimetric analysis

Abstract

Thermal treatments have the effect of reducing the hygroscopicity and improving the resistance to microbiological attack of wood by the degradation of its chemical constituents. During the treatments, the mass of the wood is reduced, a factor that can affect the quality of the materials according to their use. The objective was to verify the effect of the thermal treatment variables on the thermogravimetric properties and the chemical composition of Eucalyptus grandis. The treatments were carried out in a vacuum oven with three atmosphere conditions - vacuum; N2; vacuum+N2 at temperatures of 140, 180 and 220 °C for 6 hours. It was observed that the mass loss during treatments differed only according to the temperatures used. The extractive content, total lignin and holocellulose presented significant changes only at 220°C in all three atmospheres. In the thermogravimetric analysis, the greatest value of residual mass was found in the treatment that used nitrogen and 220 °C, thus demonstrating that this treatment was more invasive, leading to the conclusion that the vacuum application can help to reduce the degradation of the constituents of the eucalypti wood. wood, which can lead to the production of thermally treated wood without great losses in the mechanical properties.

Downloads

Download data is not yet available.

References

Araújo, S.O.; Vital, B.R.; Mendoza, Z.M.S.H.; Vieira, T.A.; Carneiro, A.C.O. 2012. Properties of thermorectificated wood of Eucalyptus grandis and Eucalyptus. Scientia Forestalis 40 (95): 327-336.

Araújo, S.O.; Vital, B.R.; Oliveira, B.; Carneiro, A.C.O.; Lourenço, A.; Pereira, H. 2016. Physical and mechanical properties of heat treated wood from Aspidosperma populifolium, Dipteryx odorata and Mimosa scabrella. Maderas-Cienc Tecnol 18 (1): 143-156.
DOI: https://doi.org/10.4067/S0718-221X2016005000015.

Ayata, U.; Akcay, C.; Esteves, B. 2017. Determination of decay resistance against Pleurotus ostreatus and Coniophora puteana fungus of heat-treated scotch pine, oak and beech wood species. Maderas-Cienc Tecnol 19(3):309-316. DOI: https://doi.org/10.4067/S0718-221X2017005000026.

Bach, Q.; Tran, K.; Skreiberg, O.; Khalil, R.A.; Phan, A.N. 2014. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions. Fuel 137: 375-383.DOI: https://doi.org/10.1016/j.fuel.2014.08.011.

Bourgois, J.; Guyonnet, R. 1988. Characterization and analysis of torrified wood. Wood Science Technology 22 (2): 143-155. DOI: https://doi.org/10.1007/BF00355850.

Brito, J.O.; Garcia, J.N.; Bortoletto Junior, G.; Pessoa, A.M.C.; Silva, P.H.M. 2006. The density and shrinkage behavior of Eucalyptus grandis wood submitted to different temperatures of thermorectification. Cerne 12 (2): 182-188. URL: http://cerne.ufla.br/site/index.php/CERNE/article/view/413.

Candelier, K.; Dumarçay, S.; Pétrissans, A.; Desharnais, L.; Gérardin, P.; Pétrissans, M. 2013. Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: nitrogen or vacuum. Polymer Degradation and Stability 98: 677-681. DOI: https://doi.org/10.1016/j.polymdegradstab.2012.10.022.

Da Silva, C.M.S.; Carneiro, A.C.O.; Pereira, B.L.C.; Vital, B.R.; Alves, I.C.N.; Magalhães, M.A. 2016. Stability to thermal degradation and chemical composition of woody biomass subjected to the torrefaction process. European Journal of Wood and Wood Products 74 (6): 845-850. DOI: https://doi.org/10.1007/s00107-016-1060-z.

Esteves, B.M.; Domingos, I.L.; Pereira, H.M. 2008. Pine wood modification by heat treatment in air. BioResources 3 (1): 142-154.

Esteves, B.M.; Pereira, H.M. 2009. Wood modification by heat treatment: a review. BioResources 4 (1): 370-404.

Esteves, B.; Videira, R.; Pereira, H. 2011. Chemistry and ecotoxicity of heat treated pine wood extractives. Wood Science Technology 45 (6): 661-676. DOI: https://doi.org/10.1007/s00226-010-0356-0.

Fengel, D.; Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin.

Figueiró, C.G.; Vital, B.R.; Carneiro, A.C.O.; Silva, C.M.S.; Magalhães, M.A.; Fialho, L.F. 2019. Energy valorization of woody biomass by torrefaction treatment: a brazilian experimental study. Maderas-Cienc Tecnol 21(3): 297-304. DOI: https://
doi.org/10.4067/S0718-221X2019005000302.

Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. 2010. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Processing Technology 91: 759-764. DOI: https://doi.org/10.1016/J.FUPROC.2010.02.009.

Inari, G.N.; Petrissans, M.; Gerardin, P. 2007. Chemical reactivity of heat-treated wood. Wood Science Technology 41: 157-168. DOI: https://doi.org/10.1007/s00226-006-0092-7.

Martinka, J.; Hroncová, E.; Chrebet, T.; Balog, K. 2014. The influence of spruce wood heat treatment on its thermal stability and burning process. European Journal of Wood and Wood Products 72: 477-486. DOI: https://doi.org/10.1007/s00107-014-0805-9.

Moura, L.F.; Brito, J.O.; Silva Júnior, F.G. 2012. Effect of thermal treatment on the chemical characteristics of wood from Eucalyptus grandis W. Hill ex Maiden under different atmospheric conditions. Cerne 18 (3): 449-455. DOI: https://doi.org/10.1590/S0104-77602012000300012.

Olarescu, M.C.; Campean, M.; Ispas, M.; Cosereanu, C. 2013. Effect of thermal treatment on some properties of lime wood. European Journal of Wood and Wood Products 72: 559–562. DOI: https://doi.org/10.1007/s00107-014-0809-5.

Pereira, B.L.C.; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Colodette, J.L.; Oliveira, A.C.; Fontes, M.P.F. 2013. Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8 (3): 4574-4592.

Prins, M.J.; Ptasinski, K.J.; Jansen, F.J.J.G. 2006. Torrefaction of wood, part 2. Analysis of products. Journal of Analytical Applied Pyrolysis 77: 35–40. DOI: https://doi.org/10.1016/j.jaap.2006.01.001.

Shen, D.K.; Gu, S.; Bridgwater, A.V. 2010. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicelluloses. Carbohydrate Polymers 82: 39-45. DOI: https://doi.org/10.1016/j.carbpol.2010.04.018.

Sjöström, E. 1981. Wood polysaccharides, in Wood chemistry. Fundamentals and applications. Academic Press 3: 49–67.

TAPPI. 2002. Technical Association of the Pulp and Paper Industry. TAPPI test methods T 204 om-88: solvent extractives of wood and pulp. In: TAPPI Standard Method. Atlanta, GA.

Xing, D.; Li, J. 2010. Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. wood. BioResources 9 (3): 4274-4287.

Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. DOI: https://doi.org/10.1016/j.fuel.2006.12.013.

Yildiz, S.; Gezer, E.D.; Yildiz, U.C. 2006. Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment 41 (12): 1762-1766. DOI: DOI: https://doi.org/10.1016/j.buildenv.2005.07.017.

Watanabe, T.; Ohnishi, J.; Yamasaki, Y.; Kaizu, S.; Koshijima, T. 1989. Binding-site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation. Agricultural and Biological Chemistry 53: 2233–2252. DOI: https://doi.org/10.1080/00021369.1989.10869603.

Welzbacher, C.R.; Brischke, C.; Rapp, A.O. 2007. Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater Science and Engineering 2: 66-76. DOI: https://doi.org/10.1080/17480270701770606.

Wentzel, M.; Brischke, C.; Militz, H. 2019. Dynamic and static mechanical properties of Eucalyptus nitens thermally modified in an open and closed reactor system. Maderas-Cienc Tecnol 21(2):141-152. DOI: http://dx.doi.org/10.4067/S0718-221X2019005000201.

Zanuncio, A.J.V.; Nobre, J.R.C.; Motta, J.P.; Trugilho, P.F. 2014. Chemistry and colorimetry of thermorectified wood from Eucalyptus grandis W. Mill ex Maiden. Revista Árvore 38 (4): 765-770.

Downloads

Published

2020-04-01

How to Cite

Nava Soratto, D., Simões da Silva, C. M., Rocha Vital, B., Oliveira Carneiro, A. de C., Jerásio Bianche, J., Neto Boschetti, W. T. N. B., Pereira Freitas, T., & Ceccato Ferreira, J. (2020). Effect of thermal treatment variables on the thermogravimetric properties of eucalypt wood. Maderas-Cienc Tecnol, 22(2), 241–250. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4003

Issue

Section

Article

Most read articles by the same author(s)