Incidencia de la impregnación de madera con alcohol polivinilico y polietilenglicol en algunas propiedades físicas y mecánicas de pino oocarpa

Authors

  • Jhon F. Herrera-Builes
  • Rubén A. Ananías
  • Jairo A. Osorio

Keywords:

Anti-swelling efficiency, density, modulus of elasticity, Pinus oocarpa, polymers, static flexion, wood chemical treatments

Abstract

This research was performed with Pinus oocarpa Schiede ex Schltdl. Var. Ochoterenai of Forest Plantation of Colombia, which presents some important troubles that limiting its use, due to its low dimensional stability and mechanical resistance.  Polymer impregnation treatments could reduce deformation and improve physical and mechanical properties of the wood. The aim of this research was evaluated the effect of polyethylene glycol impregnation with molecular weight 600 and 1500, polyvinyl alcohol and zeolite addition, on density, dimensional stability, static flexion and compression parallel to Grain. The samples were impregnated in hot bath at 95 °C for 8 hours, and then impregnated at room temperature for 16 hours. The assessment of the wood was carried out under the Colombian Technical Standards NTC 290, 663, 784 and other standards. The best results were obtained with the impregnation of polyethylene glycol 1500 where the density increased between 21 % and 24 %; the anti-swelling efficiency was 60 %; in static flexion the modulus rupture increased 20 %, modulus of elasticity 39 % and compression parallel to grain increased 8 %.  Wood changed to the structural lumber category, improving in its mechanical and physical properties.  Treatment with polyethylene glycol 600 provided lower anti-swelling efficiency (14%), and lower improvement in density (8%), and in mechanical properties (1% to 7%).

Downloads

Download data is not yet available.

References

Alma, M.; Hafi, Z.; Maldas, D. 1996. Dimensional stability of several wood species treated with vinyl monomers and polyethylene glycol-1000. Int J Polym Mater 32(1-4): 93–99. https://doi.org/10.1080/00914039608029385

Bardet. M.; Gerbaud, G.; Tran, Q.; Hediger, S. 2006. Study of interactions between polyethylene glycol and archaeological wood components by C-13 high-resolution solid-state CPMAS NMR. J Archaeol Sci 34(10): 1670–1676. https://doi.org/10.1016/j.jas.2006.12.005

Behr, G.; Bollmus, S.; Gellerich, A.; Militz, H. 2017. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Mater Sci Eng 13(5): 262–270. https://doi.org/10.1080/17480272.2017.1313313

Berube, M.; Schorr, D.; Ball, R.; Landry, V.; Blanchet, P. 2017. Determination of In Situ Esterification Parameters of Citric Acid-Glycerol Based Polymers for Wood Impregnation. J Polym Environ 26(3): 970–979. https://doi.org/10.1007/s10924-017-1011-8

Bjurhager, I.; Ljungdahl, J.; Wallstrom, L.; Gamstedt, E.; Berglund, L. 2010. Towards improved understanding of PEG impregnated waterlogged archaeological wood: A model study on recent oak. Holzforschung 64(2): 243–250. https://doi.org/10.1515/hf.2010.024

Cai, X.; Riedl, B.; Zhang, S.Y.; Wan, H. 2007. Formation and properties of nanocomposites made up from solida spen wood, melamine-urea-formaldehyde, and clay. Holzforschung 61(2): 148–154. https://doi.org/10.1515/HF.2007.027

Chiozza, F.; Santoni, I.; Pizzo, B. 2018. Discoloration of poly(vinyl acetate) (PVAc) gluelines in wood assemblies. Polym Degrad Stabil 157: 90–99. https://doi.org/10.1016/j.polymdegradstab.2018.10.003

Cipreses de Colombia S.A. 2017. Resumen público plan de manejo forestal. Medellín, Colombia. http://nucleosdemadera.com/wp-content/uploads/2017/10/RESUMEN-P%C3%9ABLICO-PLAN-DE-MANEJO-2017.pdf

Cooper, P.; Ung, Y.; Holzscherer, A. 1991. Diffusion into and bulking of the wood cell wall with polyethylene glycols (PEG). In Proceedings of International Research Group on Wood Protection, Document IRG/WP/3660. Stockholm, Sweden.

Devi, R.; Ali, I.; Maji, T. 2003. Chemical modification of rubber wood with styrene in combination with a crosslinker: effect on dimensional stability and strength property. Bioresour Technol 88(3): 185–188. https://doi.org/10.1016/S0960-8524(03)00003-8

Dong, X.; Zhuo, X.; Liu, C. 2016. Improvement of decay resistance of wood by in-situ hybridization of reactive monomers and nano-SiO2 within wood. Applied Environmental Biotechnology 1(2): 56–62. http://ojs.whioce.com/index.php/aeb-transferred/article/view/168/128

Ermeydan, M. 2018. Modification of spruce wood by UV-crosslinked PEG hydrogels inside wood cell walls. React Funct Polym 131: 100–106. https://doi.org/10.1016/j.reactfunctpolym.2018.07.013

Gadhave, R.; Mahanwar, P.; Gadekar, P. 2019. Cross-linking of polyninyl alcohol/starch blends by epoxy silane for improvement in thermal and mechanical properties. BioResources 14(2): 3833–3843. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_2_3833_Gadhave_Cross_Linking_Polyvinyl_Alcohol_Starch

Gardner, D.; Bozo, A. 2018. Ten-year field study of wood plastic composites in Santiago, Chile: biological, mechanical and physical property performance. Maderas-Cienc Tecnol 20(2): 257–266. http://dx.doi.org/10.4067/S0718-221X2018005002901

Giridhar, B.; Pandey, K.; Prasad, B.; Bisht, S.; Vagdevi, H. 2017. Dimensional stabilization of wood by chemical modification using isopropenyl acetate. Maderas-Cienc Tecnol 19(1): 15–20. http://dx.doi.org/10.4067/S0718-221X2017005000002

Gómez, H. 1989. Estadística experimental con aplicaciones a las ciencias agrícolas. Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. Medellín, Colombia.

González, M.; Honorato, J. 2005. Resistencia a la pudrición y estabilidad dimensional de la madera acetilada con y sin catalizador. Madera Bosques 11(1): 49–61. https://www.redalyc.org/pdf/617/61711104.pdf

Hill, C. 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd., West Sussex, England, pp 149–173.
Holloway, J.; Lowman, A.; Palmese, G. 2010. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 6(12): 4716–4724. https://doi.org/10.1016/j.actbio.2010.06.025

Jeremic, D.; Cooper, P.; Brodersen, P. 2007. Penetration of poly (ethylene glycol) into wood cell walls of red pine. Holzforschung 61(3): 272–278. https://doi.org/10.1515/HF.2007.068

Kang, H.; Lee, W.; Jang, S.; Kang, C. 2017. Polyethylene Glycol Treatment of Han-Ok Round Wood Components to Prevent Surface Checking. BioResources 12(2): 4229–4238. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_2_4229_Kang_Polyethylene_Glycol_Treatment_Round_Wood

Kocabaş, U. 2014. The Yenikapı Byzantine-Era Shipwrecks, Istanbul, Turkey: a preliminary report and inventory of the 27 wrecks studied by Istanbul University. Int J Naut Archaeol 44(1): 5–38. https://doi.org/10.1111/1095-9270.12084

Krause, A.; Jones, D.; Van derZee, M.; Militz, H. 2003. Interlace treatment—wood modification with N-methylol compounds. In Proceedings of the first European conference on wood modification. Ghent, Belgium.

Kwak, H.; Woo, H.; Kim, E.; H., Lee, K. 2018. Water-resistant Lignin/Poly(vinyl alcohol) Blend Fibers for Removal of Hexavalent Chromium. Fiber Polym 19(6): 1175–1183. https://doi.org/10.1007/s12221-018-8052-z

Lamprecht, H. 1990. Silvicultura en los Trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido. Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, Germany. 335 p.

Li, Y.; Wang, B.; Fu, Q.; Liu, Y.; Dong, X. 2010. Performance of wood-polymer composite prepared by in situ synthesis of terpolymer within wood. Appl Mech Mater 34: 1165–1169. https://doi.org/10.4028/www.scientific.net/AMM.34-35.1165

Li, W.; Wang, H.; Ren, D.; Yu, Y.; Yu, Y. 2015. Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Sci Technol 49(4): 845–856. https://doi.org/10.1007/s00226-015-0721-0

Luo, S.; Cao, J.; Wang, X. 2013. Investigation of the Interfacial Compatibility of PEG and Thermally Modified Wood Flour/Polypropylene Composites Using the Stress Relaxation Approach. BioResources 8(2): 2064-2073. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/3468

Lutz, J.; Hoth, A. 2006. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules 39: 893 896. https://doi.org/10.1021/ma0517042

Ma, H.; Yang, F.; Tang, L.; Feng Y. 2018. Effect of polyvinyl alcohol treatment on mechanical properties of bamboo/polylactic acid composites. BioResources 13(2): 2578–2591. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_2578_Yang_Polyvinyl_Alcohol_Treatment_Bamboo

Mattos, B.; Henrique, P.; Esteves, W.; Lazzarotto, M.; Gatto, D. 2015. Thermal tools in the evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. J Therm Anal Calorim 121(3): 1263–1271. https://doi.org/10.1007/s10973-015-4647-4

Meints, T.; Hansmann, C.; Gindl-Altmutter, W. 2018. Suitability of Different Variants of Polyethylene Glycol Impregnation for the Dimensional Stabilization of Oak Wood. Polymers 10(1): 81–93. https://doi.org/10.3390/polym10010081

Norma Técnica Colombiana. NTC. 2006. NTC 290: Maderas. Determinación de densidad. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec.org/wp-content/uploads/pdfs/NTC290.pdf

Norma Técnica Colombiana. NTC. 2006. NTC 663: Maderas. Determinación de la resistencia a la flexión. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec.org/wp-content/uploads/pdfs/NTC663.pdf

Norma Técnica Colombiana. NTC. 2006. NTC 784: Maderas. Determinación de la resistencia a la compression axial o paralela al grano. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec.org/wp-content/uploads/pdfs/NTC784.pdf

Ohmae, K.; Minato, K.; Norimoro, M. 2002. The analysis of dimensional changes due to chemical treatments and water soaking for hinoki (chamaecyparis obtusa) wood. Holzforschung 56(1): 98–102. https://doi.org/10.1515/HF.2002.016

Olaniran, S.; Michen, B.; Mora, D.; Wittel, F.; Bachtiar, E.; Burgert, I.; Rüggeberg, M. 2019. Mechanical behaviour of chemically modified Norway spruce (Picea abies L. Karst.): Experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Sci Technol 53(2): 425–445. https://doi.org/10.1007/s00226-019-01080-5

Paz, J.; Sanabria, E. 2000. Dimensional Stabilization of Aspidosperma quebracho-blanco with polyethylene glycol. In XXI IUFRO World Congress. Vol. 3, Malaysia. pp 236–237.

Rowell, R. 2006. Chemical modification of wood: a short review. Wood Mater Sci Eng 1(1): 29–33. https://doi.org/10.1080/17480270600670923

Rowell, R.; Youngs, R. 1981. Dimensional stabilization of wood in use. United States Department of Agriculture, USDA. Forest Products Laboratory, USA. Research note FPL-0243: 1–8. https://www.fpl.fs.fed.us/documnts/fplrn/fplrn243.pdf

Solikhin, A.; Hadi, Y.; Massijaya, M.; Nikmatin, S.; Suzuki, S.; Kojima, Y., Kobori, H. 2018. Properties of Poly(Vinyl Alcohol)/Chitosan Nanocomposite Films Reinforced with Oil Palm Empty Fruit Bunch Amorphous Lignocellulose Nanofibers. J Polym Environ 26(8): 3316–3333. https://doi.org/10.1007/s10924-018-1215-6

Sun, W.; Shen, H.; Cao, J. 2016. Modification of wood by glutaraldehyde and poly (vinyl alcohol). Mater Des 96: 392–400. https://doi.org/10.1016/j.matdes.2016.02.044

Tan, B.; Ching, Y.; Gan, S.; Ramesh, S.; Shaifulazuar, R. 2015. Biodegradable mulches based on poly(vinyl alcohol), kenaf fiber, and urea. BioResources 10(3): 5532–5543. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_3_5532_Tan_Biodegradable_Mulches_Kenaf_Fiber_Urea

Unsal, O.; Candan, Z.; Korkut, S. 2011. Wettability and roughness characteristics of modified wood boards using a hot-press. Ind Crops Prod 34(3): 1455–1457. https://doi.org/10.1016/j.indcrop.2011.04.024

Xiao, Z.; Chen, H.; Mai, C.; Militz, H.; Xie, Y. 2018. Coating performance on glutaraldehyde-modified wood. J For Res 30(1): 353–361. https://doi.org/10.1007/s11676-018-0620-y

Yang, M.; Chen, X.; Lin, H.; Han, C.; Zhang, S. 2018. A simple fabrication of superhydrophobic wood surface by natural rosin based compound via impregnation at room temperature. Eur J Wood Wood Prod 76(5): 1417–1425. https://doi.org/10.1007/s00107-018-1319-7

Yildiz, Ü.; Yildiz, S.; Gezer, E. 2005. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. Bioresour Technol 96(9): 1003–1011. https://doi.org/10.1016/j.biortech.2004.09.010

Yu, L.; Zhang, Y.; Zhu, L.; Ma, X. 2018. Effects of nano-SiO2/Polyethylene glicol on the dimensional stability modified ACQ treated southern pine. Wood Res Slovakia 63(5): 763–770. http://www.woodresearch.sk/wr/201805/03.pdf

Zheng, Q.; Cai, Z.; Gong, S. 2014. Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2(9): 3110–3118. https://doi.org/10.1039/C3TA14642A

Downloads

Published

2020-04-01

How to Cite

Herrera-Builes, J. F., Ananías, R. A., & A. Osorio, J. (2020). Incidencia de la impregnación de madera con alcohol polivinilico y polietilenglicol en algunas propiedades físicas y mecánicas de pino oocarpa. Maderas-Cienc Tecnol, 22(2), 213–222. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/4016

Issue

Section

Article