Determination of the physical and mechanical properties of wood-cement boards produced with Pinus spp and pozzolans waste

Authors

  • Adauto José Miranda de Lima
  • Setsuo Iwakiri
  • Rosilani Trianoski

Keywords:

Compressive strength, construction materials, internal bond, particleboards, pozzolans, swelling, wood waste

Abstract

The objective of this research was to evaluate the physical-mechanical properties of wood-cement boards produced with waste particles of Pinus spp. and sufficient levels of pozzolans to assimilate all Ca(OH)2 produced during the hydration reactions of Portland cement. The pozzolans used were: silica fume, metakaolin, rice husk ash, and calcined ceramic waste. The values of the pozzolans were determined based on the theoretical determination of the Ca(OH)2 content produced by the hydration reactions of Portland cement. The pozzolanic activity index was determined by the modified Chapelle test, according to NBR15895:2010 and NF18-513:2010 standards. The boards were produced through cold compression, and the test specimens were produced and tested for physical and mechanical properties at 28/91 days of curing, according to ASTM-1037:2012, EN-317:1993, NBR-9778:2005 and ASTM-642:2002 standards. The minimum values employed in the Bison® commercial process were used as reference for the physical-mechanical characterization. The boards produced presented good physical-mechanical properties even with high levels of replacement of cement by pozzolans. These properties were similar to the ones presented by the reference boards, despite the significant reduction in the specific mass of the prototype boards, which demonstrates the technological possibility of use of these materials in the production of wood-cement boards.

Downloads

Download data is not yet available.

References

Association Française de normalization. 2010. NFP 18-513: Addition pour béton hydraulique – Métakaolin – Spécifications et critères de conformité – Métakaolin, addition pouzzolanique pour bétons. St. Denis, France.

American Society for Testing and Materials. 2013. ASTM C-642: Standard test method for density, absorption and voids in hardened concrete. West Conshohocken, USA.

American Society for Testing and Materials. 2012. ASTM D 1037: Standard test methods for evaluating properties of wood-base fiber and particle panel materials. West Conshohocken, USA.

Associação Brasileira de Normas Técnicas. 2014. NBR 12.653: Materiais pozolânicos – Requisitos. Rio de Janeiro.

Associação Brasileira de Normas Técnicas. 2010. NBR 15.895: Materiais pozolânicos – Determinação do teor de hidróxido de cálcio fixado – Método Chapelle modificado. Rio de Janeiro.

Associação Brasileira de Normas Técnicas. 2009. NBR 9778: Argamassa e concreto endurecidos: Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro.

Ardanuy, A. M.; Claramunt, J.; Toledo-Filho, R. D. 2015. Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials 79 (15): 115-128. https://doi.org/10.1016/j.conbuildmat.2015.01.035.

Azambuja, R.A.; Castro, V.G.; Villas Bôas, B. T.; Parchen, C. F. A.; Iwakiri, S. 2017. Particle size and lime addiction on properties of wood-cement composites produced by the method of densification by vibro compaction. Ciência Rural 47 (7): e20140250. https://doi.org/10.1590/0103-8478cr20140250.

Baroghel-bouny, V.; Capra, B.; Laurens, S. 2014. Durabilidade das armaduras e do concreto de cobrimento. Durabilidade do Concreto. São Paulo: Jean-Pierre Olliver e Angélique Vichot, 255-326.

Bertolini, M.S.; Campos, C.I.; Souza, A.M.; Panzera, T.H.; Christoforo, A.L.; Lahr, F.A.R. 2014. Wood-cement composites from wastes of Pinus spp. Wood: Effect of particles treatment. International Journal of Composite Materials 4 (2): 146-149. doi:10.5923/j.cmaterials.20140402.14.

British Standards Institution. 1993. BS EN 323: Wood-based panels. Determination of density. London.

Cechin, L. 2017. Análise da viabilidade de produção de painéis de cimento reforçados com biomassa vegetal e escória de alto-forno. Masters’s thesis, Universidade Tecnológica Federal do Paraná, Curitiba.

Claramunt, J.; Ardanuy, M.; Fernandez-Carrasco, L.J. 2015. Wet/dry cycling durability of cement mortar composites reinforced with micro and nanoscale cellulose pulps. BioResources 10 (2): 3045-3055.

Doudart de la Gree, G. C. H.; Yu, Q. L.; Bouwers, H. I. J. 2014. Wood-wool cement board: Utilization of a porous binder. In: 14th International Inorganic-bonded Fiber Composites Conference. Proceedings. Vietnan, 177- 186.

European Committee for Standardization. 1993. EN 317: Particleboards and fiberboards – Determination of swelling in thickness after immersion in water. London.

Fan, M.; Ndikontar, M. K.; Zhou, X.; Ngamveng, J. N. 2012. Cement-bonded composites made from tropical woods: Compability of wood and cement. Construction and Building Materials 36: 135-140. https://doi.org/10.1016/j.conbuildmat.2012.04.089.

Garcez, M.R.; Garcez, E.O.; Machado, A.O.; Gatto, D.A. 2016. Cement-wood composites: effects of wood species, particle treatments and mix proportion. International Journal of Composite Materials 6 (1): 1-8. https://doi.org/10.5923/j.cmaterials.20160601.01

Garcia, E.; Cabral Júnior, M.; Quarcioni, V. A.; Chotoli, F. F. 2015. Resíduo de cerâmica vermelha (RCV): uma alternativa como material pozolânico. Cerâmica Industrial 19 (4): 31- 38. http://ceramicaindustrial.org.br/pdf/v19n4/v19n4a05.pdf

Hamouda, T.; Seyam, A. F. M.; Peters, K. 2015. Evaluation of the integrity of 3D orthogonal woven composites with embedded polymer optical fibers. Composites Part. B: Engineering 78: 79-85. https://doi.org/10.1016/j.compositesb.2015.03.092.

Iwakiri, S.; Trianoski, R.; Fonte A.P.N.; Cezimbra, D.J.; Fomin, I.M.; Molleken, R. 2017. Potential use of tropical pine species for woods cement panel production, Scientia Forestalis 45: 151-159.
Kulakowski, M. P.; Pereira, F. M.; Molin, D. C. C. D. 2009. Carbonation-induced reinforcement corrosion in silica fume concrete. Construction and Building Materials 23(3): 1189-1195. https://doi.org/10.1016/j.conbuildmat.2008.08.005.

Lima, A. J. M.; Iwakiri, S. 2011. Produtos alternativos na produção de blocos para alvenaria estrutural. Floresta e Ambiente 18(3): 310-323. http://dx.doi.org/10.4322/floram.2011.051.

Lima, A. J. M.; Iwakiri, S.; Lomelí-Ramírez, M. G. 2011. Utilização de resíduos de Pinus spp., metacaulim de alta reatividade e resíduo de cerâmica calcinada em compósitos cimento-madeira. Madera y Bosques 17(2): 47-65.

Macioski, G. 2017. Estudo da álcali-ativação de pó de blocos cerâmicos com cal hidratada. Master’s thesis, Universidade Tecnológica Federal do Paraná, Curitiba.

Matoski, A.; Hara, M.M.; Iwakiri, S.; Casali, J.M. 2013. Influence of accelerating admixtures in wood-cement panels: characteristics and properties. Acta Scientiarum Technology 35(4): 655-660. https://doi.org/10.4025/actascitechnol.v35i4.11261.

Ncl Industries ltd. 2011. Bison Panel – Cement bonded particle board. Abids, 24 p.

Ribeiro, U. G. 2016. Desempenho térmico, acústico e mecânico de compósitos cimentícios produzidos com resíduos da indústria madeireira de Porto Velho. Master’s thesis, Universidade Federal do Amazonas, Manaus.

Sistema Nacional de Informações Florestais. 2016. Produção Florestal. Available in: http://www.florestal.gov.br, acesso em: 16 out. 2016.

Souza, F. B.; Ramos Netto, A. L.; Silva, D. S.; Silva, B. V. 2014. Análise comparativa das propriedades de concretos convencionais com substituição parcial do cimento Portland por cinza de casca de arroz. Iniciação Científica 12(1): 5-18.

Sruthi, V.; George, E. H. 2017. A review on silica fume – An additive in concrete. International Journal of Innovative Research in Science 3(3): 1-15.

Technical Association of the Pulp and Paper Industry. 2017. TAPPI T 204 CM: Solvent extractives of wood and pulp. Atlanta.

Technical Association of the Pulp and Paper Industry. 2016. TAPPI T 252 OM: pH and electrical conductivity on hot water extracts of pulp, paper and paperboard. Atlanta.

Tashima, M. M.; Fioriti, C. F.; Akazaki, J. L.; Bernarbeu, J. P.; Sousa, L. C.; Melges, J. L. P. 2012. Cinza de casca de arroz (CCA) altamente reativa: método de produção e atividade pozolânica. Ambiente Construído 12(2): 151-163. http://hdl.handle.net/10251/56851.

Tichi, A. H.; Bazyar, B.; Khademieslan, H.; Rangavar, H.; Taleipour, M. 2016. The effect of nano-wollastonite on biological, mechanical, physical and microstructural properties of the composite made of wood-cement fiber. Journal of Fundamental and Applied Sciences 8(3): 1466-1479. http://dx.doi.org/10.4067/S0718-221X2015005000072.

Downloads

Published

2020-10-01

How to Cite

Miranda de Lima, A. J., Iwakiri, S., & Trianoski, R. (2020). Determination of the physical and mechanical properties of wood-cement boards produced with Pinus spp and pozzolans waste. Maderas-Cienc Tecnol, 22(4), 527–536. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4221

Issue

Section

Article

Most read articles by the same author(s)