Chemical variation of five natural extracts by non-polar solvent

  • T. A. Prayitno
  • R. Widyorini
  • G. Lukmandaru
Keywords: Acacia spp., Alstonia scholaris, Azardiachta indica, chemical compounds, Dioscorea spp., Orthosiphon spp., wood preservation

Abstract

Chemical compounds of wood preservation from plants vary and are not known specific to the species. Chemical analysis of plants is responsible to ensure active compound in natural extracts wood treatment. There are many sources of natural extracts found in Indonesia that were explored for wood preservatives chemicals. They are bark of acacia and alstonia, leaves of orthosiphon and azardirachta and Dioscorea tubers. The present study was aimed at investigating the variation of the chemical constituent of natural extracts material of wood preservative through GC-MS analysis. Five natural extract sources were acacia bark (Acacia spp.), pulai bark (Alstonia scholaris), kumis kucing leaves (Orthosiphon spp.), mimba leaves (Azardirachta indica), and gadung tubers (Dioscorea spp.). Two non-polar solvents, i.e., n-hexane and petroleum ether were used for five natural source extractions following ASTM soxhlet extraction. The research showed that triterpene and fatty acid derivatives were the major compounds present in five natural extracts. They were lupeol; 7,22-Ergostadienone; Lup-20(29)-en-3-one; Lup-20(29)-en-3-ol, acetate, (3.beta.)-; urs-12-en-3-one; ethanol,2,2-diethoxy-; stigmasta-5,22-dien-3-ol, acetate,(3.beta.)-; 5H-3,5a-Epoxynaphth(2,1-c)oxepin, dodecahydro-3,8,8,11a-tetramethyl-; linoleic acid; naphthalene, 1-methyl-. These compounds have been assigned as the possibly responsible to against termites or fungi.

Downloads

Download data is not yet available.

References

Ahmed, S.; Zafar, M.I.; Hussain A. Riaz, M.A.; Shahid, M. 2011. Evaluation of plant extracts on mortality and tunneling activities of subterranean termites in Pakistan. In: Stoytcheva M (ed) Pesticides in the Modern World - Pests Control and Pesticides Exposure and Toxicity Assessment. InTech: Rijeka, Croatia. ISBN: 978-953-307-457-3. https://doi.org/10.5772/18999

Al-Hashemi, Z.S.S.; Hossain, M.A. 2016. Biological activities of different neem leaf crude extracts used locally in Ayurvedic medicine. Pacific science review: Natural science and engineering 18:128-131. http://dx.doi.org/10.1016/j.psra.2016.09.013

Anburaj, G.; Marimuthu M.; Rajasudha, V.; Manikandan R. 2016. Photochemical screening and GC-MS analysis of ethanolic extract of Tecima Stans (Family: Bignoniaceae) Yellow Bell Flowers. Journal of Pharmacognosy and Phytochemistry 5(4): 172-175. http://dx.doi.org/10.22271/phyto

Antwi-Boasiako, C.; Damoah, A. 2010. Investigation of synergistic effect of extracts from Erythrophleum suaveolens, Azadirachta indica, and Chromolaena odorata on the durability of Antiaris toxicaria. Int Biodeter Biodegr 64: 97-103. http://dx.doi.org/10.1016/j.ibiod.2009.08.005

Arora, A.; Meena, S. 2016. Qualitative premilinary phytochemical screening and GC-MS analysis of root of Sarcostemma viminale (L) R. BR., an endangered plant. International Journal of Pharmaceutical Research and Bio-science 5(2):89-100. http://www.ijprbs.com/index.php

Asghar, S.F.; Habib-Ur, Rehman.; Choudahry, M.I.; Atta-Ur-Rahman. 2011. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of extract (oil) and bioassays of crude extract of Iris germanica. International Journal of Genetics and Molecular Biology 3(7): 95-100. http://www.academicjournals.org/ijgmb

ASTM. 2007. Ether solubility in wood. ASTM D-1108-96. 2007. Annual Book of ASTM Standard.

ATSDR. 2005. Toxicological profile for naphthalene, 1- methylnaphthalene, and 2-methylnaphthalene. Agency for Toxic Substances and Disease Registry. Atlanta, Georgia.

Aziz, A.; Prayitno, T.A.; Hadikusumo, S.A.; Santoso, M. 2013. Uji ekstrak etanol kumis kucing (Orthosiphon sp.) sebagai pengawet alami kayu. Jurnal Ilmu Kehutanan 7(1). 48-56. https://doi.org/10.22146/jik.6137

Azman, I.; Mutalib, S.A.; Yusoff, S.F.M.; Fazry, S.; Noordin, A.; Kumaran, M.; Lazim, A.M. 2015. Novel Dioscorea hipsida strach-based hydrogels and their beneficial use as disinfectants. Journal of Bioactive and Compatible Polymers. 31(1): 42-59. https://doi.org/10.1177/0883911515597704

Britto, A.J.; Sheeba, D.H. 2011. Azadiracta indica juss – a potential antimicrobial agent. International Journal of Applied Biological and Pharmaceutical Technology: 4550–4557. http://dx.doi.org/10.1016/j.jtusci.2013.05.0031.

Chattopadhyay. 1999. Possible mechanism of anti-hyperglycemic effect of Azadirachta indica leaf extract. Journal of Ethnopharmacology 67 (3): 373–376. https://doi.org/10.1016/s0378-8741(99)00094-x

Chen, J.; Henderson, G.; Grimm, C.C.; Lloyd, S.W.; Laine, R.A. 1998. Termites fumigate their nests with naphthalene. Nature 392: 558-559. https://doi.org/10.1038/33305

Chen, P.; Chen, Y.; Yeh, T.; Chang, S. 2014. Mechanism of decay resistance of heartwood extracts from Acacia confusa against the brown-rot fungus Laetiporus sulphureus. Wood Sci Technology 8 (3):451-465. https://doi.org/10.1007/s00226-014-0615-6.

Cock, I.E. 2017. Australian Acacia spp. extracts as natural food preservatives: Growth inhibition of food spoilage and food poisoning bacteria. Pharmacogn. Commn. 7(1): 4-15. https://doi.org/10.5530/pc.2017.1.2

Daisy, B.H.; Strobel, G.A.; Castillo, U.; Ezra, D.; Sears, J.; Weaver, D.K.; Runyon, J.B. 2002. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737-3741. https://doi.org/10.1099/00221287-148-11-3737

Duan, D.; Bu, C.; Ma, L.; Liu, Y.; Wang, Y.; Shi G. 2012. Identification of acarcidal compounds in inula japonica extracts against Tetranychus cinnabarinus. In: Zhu, E.; Sambath, S. (eds). Information Technology and Agricultural Engineering. Advances in Intelligent and Soft Computing134. Springer: Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27537-1_88

Efeovbokhan, V.E.; Hymore, F.K.; Raji , D.; Sanni, S.E. 2015. Alternative solvents for Moringa oleifera seeds extraction. Journal of Applied Sciences 15(8): 1073-1082. https://doi.org/10.3923/jas.2015.1073.1082

Grover, N.; Patni, V. 2013. Phytochemical characterization using various solvent extracts and GC-MS analysis of methanolic extract of Woodfordia fruticosa (L) Kurz. Leaves. Int J Phar & Pharma Sci. 5(4): 291-295. http://ijppsjournal.com/index.htm

Harborne, J.B. 1973. Phytochemical methods. Chapman and Hall. https://catalogue.nla.gov.au/Record/174917

Hu, J.B.; Chang, S.S.; Peng, K.Y.; Hu, K.F.; Thevenon, M. 2015. Bio-susceptibility of shells of Camellia oleifera Abel. fruits to fungi and termites. Int Biodeter Biodegr 104:219-223. https://doi.org/10.1016/j.ibiod.2015.06.011

Islam, M.; Shams, I.; Ilias, G.N.M.; Hannan, O. 2009. Protective antifungal effect of neem (Azadirachta indica) extracts on mango (Mangifera indica) and rain tree (Albizia saman) wood. Int Biodeter Biodegr 63(2): 241-243. https://doi.org/10.1016/j.ibiod.2008.07.010

Ivanov, I.; Petkova, N.; Tumbarski, J.; Dincheva, I.; Badjakov, I.; Denev, P.; Pavlov, A. 2018. GC-MS characterization of n-hexane soluble fraction from dandelion (Taraxacum officinale Weber ex. F.H. Wigg.) aerial parts and its antioxidant and antimicrobial properties. Z Naturforsch C 73(1-2):41-47. https://doi.org/10.1515/znc-2017-0107.

Jebastella, J.; Reginald, A.M. 2015. Bioactive components of Cynodon dactylon using ethanol extract. World J Pharm Sci 3(12): 2388-2391. http://www.wjpsonline.org/
Kadir, R.; Awang, K.; Khamaruddin, Z.; Soit, Z. 2015. Chemical composition and termiticidal activities of the heartwood from Calopyllum inophyllum L. Anais da Academia Brasileira de Ciências 87(2): 743-751. http://dx.doi.org/10.1590/0001-3765201520140041

Karuppasamy, B.; Antony, N.; Veerabahu, R.M. 2012. GC-MS analysis of Polycarpaea corymbosa (L.) Lam whole plant. Asian Pacific Journal Tropical Biomedicine 1289-1292. https://doi.org/10.1016/S2221-1691(12)60402-X

Kumar,S.; Das,G.; Shin, H; Patra, J.K. 2017. Dioscorea spp. (A Wild Edible Tuber): A study on its ethnopharmacological potential and traditional use by the local people of Similipal Biosphere Reserve, India. Front Pharmacol 8: 52. https://doi.org/10.3389/fphar.2017.00052

Lucetti, D.L.; Lucetti, E.C.P.; Bandeira, M.A.M.; Veras, H.N.H.; Silva, A.H.; Leal, L.K.A.M.; Lopes, A.A.; Alves, V.C.C.; Silva, G.S.; Brito, G.A.; Viana, G.B. 2010. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel. Journal of Inflammation (London) 7: 60. https://doi.org/10.1186/1476-9255-7-60

Malik, B.; Pirzadah, T.B.; Tahir, I.; Abdin, M.Z.; Rehman, U.I.R. 2016. Phytochemical studies on Cichorium intybus L. (CHICORY) from Kashmir Himalaya using GC-MS. Journal of Pharmacy Research 10(11): 715-726. http://jprsolutions.info

Masendra; Ashitani, T.; Takahashi, K.; Lukmandaru, G. 2018. Lipophilic extractives of the inner and outer bark from six different Pinus species grown in Indonesia. Journal Forestry Research (29):1329–1336. https://doi.org/10.1007/s11676-017-0545-x

Mutai, C.; Bii, C.; Vagias, C.; Abatis, D.; Roussis, V. 2009. Antimicrobial activity of Acacia mellifera extracts and lupane triterpenes. Journal of Ethnopharmacology 123: 143–148. https://doi.org/10.1016/j.jep.2009.02.007

Old, K.M.; Vercoe, T.K.; Floyd, R.B.; Wingfield, M.J.; Roux, J.; Neser, S. 2002. Acacia spp. FAO/IPGRI Technical Guidelines for the Safe Movement of Germplasm 20. https://www.bioversityinternational.org/fileadmin/_migrated/uploads/tx_news/Acacia_spp._829.pdf

Om, A.D.; Azizan, K.A.; Baharum, S.N. 2016. Phytochemical screening of ubi gadong (Dioscorea hipsida) by using GC-MS. Seminar dan konvensyen penyelidikan perikanan, Fri Batu Maung: Pulau Pinang. https://www.researchgate.net/publication/307510333

Pedemera, A.M.; Guardia, T.; Calderón, C.E.; Rotelli, A.E.; de la Rocha, N.E.; Saad, J.R.; Verrilli, M.A.; Aseff, S.G.; Pelzer, L.E. 2010. Anti-inflammatory effect of Acacia visco extracts in animal models. Inflammopharmacol 18: 253-260. https://doi.org/10.1007/s10787-009-0028-6

Prayitno, T.A.; Widyorini, R. 2016. The adhesion properties of wood preserved with natural preservatives. Wood Research 61(2): 197-204. http://www.woodresearch.sk/articles.php

Prayitno,T.A.; Widyorini, R.: Lukmandaru, G. 2017. Bonding ability of sengon wood treated with natural extracts. Wood Research 62(6):951-960. http://www.woodresearch.sk/articles.php

Ragasa, C. Y.; Guardamano, J.D.; Tan, M.C.S.; Ulep, R.A.; Altena, I.A.V. 2016. Chemical constituents of Dioscorea luzonensis Schauer .International Journal of Current Pharmaceutical Review and
Research 7(4): 223-224.

Ramalakshmi, S.; Muthuchelian, K. 2011. Analysis of Bioactive constituents from the ethanolic leaf extract of Tabebuia rosea (Bertol.) DC by Gas Chromatography - Mass Spectrometry. International Journal of ChemTech Research 3(3): 1054-1059.

Saeed, M.A.; Sabir, A.W. 2002. Irritant potential of triterpenoids from Ficus carica leaves. Fitoterapia 73(5): 417-420. https://doi.org/10.1016/S0367-326X(02)00127-2
Saurabh,T.; Patnaik, M.B.; Bhagt, S.L.; Renge, V.C. 2011. Epoxidation of vegetable oils: A review. International Journal of Advanced Engineering Technology 2(4):491-501. http://www.newengineeringjournal.com/

Savi, A.; Calegari, G.C.; Santos, V.A.Q.; Pereira, E.A.; Teixeira, S.D.: 2018. Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea Bulbifera. Journal of King Saud University – Science 32(1):636-642. https://doi.org/10.1016/j.jksus.2018.09.002

Se Golpayegani, A.; Thévenon. M.; Gril, J.; Masson, E.; Pourtahmasi, K. 2014. Toxicity potential in the extraneous compounds of white mulberry wood (Morus alba). Maderas-Cienc Tecnol 16(2): 227-238. https://doi.org/10.4067/S0718-221X2014005000018

Şen, S.; Yalcin, M.; Taşçıoğlu, C.; Özbayram, A.K. 2017. Larvicidal activities of some bark and wood extracts against wood-damaging insects. Maderas-Cienc Tecnol 19(3): 273-284. https://doi.org/10.4067/S0718-221X2017005000023

Singh, M.K.; Gidwani, B.; Gupta, A.; Dhongade, H.; Kaur, C.D.; Kashyap, P.P.; Tripathi, D.K. 2015. A review of the medicinal plants of genus Orthosiphon (Lamiaceae). Int. J. Biol. Chem. 9(6): 318-331. https://doi.org/10.3923/ijbc.2015.318.331

Sotannde, O.A.; Yager, G.O.; Zira. B.D.; Usman, A. 2011. Termiticidal effect of neem extracts on the wood of Khaya senegalensis. Research Journal of Forestry 5(3): 128-138. https://doi.org/10.3923/rjf.2011.128.138

Ssemaganda, I.E.; Mugabi, P.; Tumwebaze, S.B. 2011. Effectiveness of selected preservatives in protecting Ugandan grown Eucalyptus grandis wood against termite attack. Maderas-Cienc Tecnol 13(2): 135-142. https://doi.org/10.4067/S0718-221X2011000200001

Subraya, C.K.; Harikiran; Gupta, D. 2012. Antioxidant and anti-inflammatory activity of Alstonia scholaris R.Br. stem bark extract. Free Radicals and Antioxidants 2(2).55-57. https://doi.org/10.5530/ax.2012.2.2.9

Surburg, H.; Panten, J. 2006. Common fragrance and flavor materials. WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim. https://b-ok.asia/book/1003351/5a42ec.

Syofuna, A.; Banana, A.Y.; Nakabonge, G. 2012. Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas-Cienc Tecnol 14(2): 155-163. https://doi.org/10.4067/S0718-221X2012000200003

Tascioglu, C.; Yalcin, M.; Troya, T.; Sivrikaya, H. 2012. Termiticidal properties of some wood and bark extracts used as wood preservatives. Bioresources 7(3): 2960-2969. https://doi.org/10.15376/biores.7.3.2960-2969

Tesarova,T.; Cech,P.; Jerabkova,E.; Stadnik,J.; Hlavaty,J.; Ekielski,A.; Rapava,N.; Mishra,P.K. 2018. Effect of ethylene oxide sterilization and accelerated ageing on the physical and mechanical properties of Beech, Oak and Elm wood: part 2. BioResource 13(4): 8464-8476. https://doi.org/10.15376/biores. 13.4.8464-8476

USDA. 2016. Dr. Duke’s phytochemical and ethnobotanical databases. http://phytochem.nal.usda.gov/
Published
2021-01-01
How to Cite
Prayitno, T. A., Widyorini, R., & Lukmandaru, G. (2021). Chemical variation of five natural extracts by non-polar solvent. Maderas-Cienc Tecnol, 23(1). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/4321
Section
Article