This is an outdated version published on 2021-01-01. Read the most recent version.

Radial variation in cell morphology of melia azedarach planted in northern vietnam

Authors

  • Doan Van Duong
  • Laurence Schimleck
  • Tai Tien Dinh
  • Chu Van Tran

DOI:

https://doi.org/10.4067/s0718-221x2021000100407

Keywords:

Cell wall thickness, core wood, outer wood, specific gravity, vessel lumen diameter

Abstract

The radial variation in cell morphology of ten-year-old Melia azedarach trees planted in northern Vietnam was experimentally investigated. The earlywood fiber lumen diameter and latewood fiber lumen diameter were almost unchanged from pith to 6th ring before significantly decreasing and remaining constant from 7th ring outwards. In contrast, fiber cell wall thickness in both earlywood and latewood increased from pith to 7th ring before becoming stable towards the bark. The maturation age of earlywood vessel lumen diameter estimated by segmented regression analysis indicated that wood of the Melia azedarach could be classified into core wood and outer wood, and the boundary between core and outer wood may be located at 7th ring from pith. This should be taken into account in wood processing using M. azedarach grown in northern Vietnam.

Downloads

Download data is not yet available.

References

Anoop, E.V.; Jijeesh, C.M.; Sindhumathi, C.R.; Jayasree, C.E. 2014. Wood physical, anatomical and mechanical properties of big leaf Mahogany (Swietenia macrophylla Roxb) a potential exotic for South India. Res J Agric For Sci 2(8): 7-13. http://www.isca.me/AGRI_FORESTRY/Archive/v2/i8/2.ISCA-RJAFS-2014-037.php

Bhat, K.M.; Priya, P.B.; Rugmini, P. 2001. Characterisation of juvenile wood in teak. Wood Sci Technol 34(6): 517-532. https://doi.org/10.1007/s002260000067

Bolza, E.; Kloot, N.H. 1963. The mechanical properties of 174 Australian timbers. Division of Forest Products Technological Paper No. 25. Commonwealth Scientific and Industrial Research Organization. Melbourne, Australia. http://nla.gov.au/nla.obj-540752254

Chowdhury, M.Q.; Ishiguri, F.; Hiraiwa, T.; Matsumoto, K.; Takashima, Y.; Iizuka, K.; Yokota, S.; Yoshizawa, N. 2012. Variation in anatomical properties and correlations with wood density and compressive strength in Casuarina equisetifolia growing in Bangladesh. Aust For 75(2): 95-99. https://doi.org/10.1080/00049158.2012.10676390

Duong, D.V. 2018. Study on within-tree variation in wood properties of Melia azedarach planted in northern Vietnam. Ph.D Thesis, Kyushu University, Japan. https://catalog.lib.kyushu-u.ac.jp

Duong, D.V.; Hasegawa, M.; Matsumura, J. 2019. The relations of fiber length, wood density, and compressive strength to ultrasonic wave velocity within stem of Melia azedarach. J Ind Acad Wood Sci 16: 1-8. https://doi.org/10.1007/s13196-018-0227-0

Duong, D.V.; Matsumura, J. 2018a. Transverse shrinkage variations within tree stems of Melia azedarach planted in northern Vietnam. J Wood Sci 64(6): 720-729. https://doi.org/10.1007/s10086-018-1756-2

Duong, D.V.; Matsumura, J. 2018b. Within-stem variations in mechanical properties of Melia azedarach planted in northern Vietnam. J Wood Sci 64(4): 329-337. https://doi.org/10.1007/s10086-018-1725-9

Duong, D.V.; Missanjo, E.; Matsumura, J. 2017. Variation in intrinsic wood properties of Melia azedarach L. planted in northern Vietnam. J Wood Sci 63(6): 560-567. https://doi.org/10.1007/s10086-017-1652-1

El-Juhany, L.I. 2011. Evaluation of some wood quality measures of eight-year-old Melia azedarach trees. Turk J Agric For 35: 165-171. https://doi.org/10.3906/tar-0912-515

Gartner, B.L.; Lei, H.; Milota, M.R. 1997. Variation in the anatomy and specific gravity of wood within and between trees of red alder (Alnus rubra Bong.). Wood Fiber Sci 29(1): 10-20. https://wfs.swst.org/index.php/wfs/article/view/1877

Harrison, N.A.; Boa, E.; Carpio, M.L. 2003. Characterization of phytoplasmas detected in Chinaberry trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathol 52: 147-157. https://doi.org/10.1046/j.1365-3059.2003.00818.x

Honjo, K.; Furukawa, I.; Sahri, M.H. 2005. Radial variation of fiber length increment in Acacia mangium. IAWA J 26(3): 339-352. https://doi.org/10.1163/22941932-90000119
Ifju, G. 1983. Quantitative wood anatomy: certain geometrical-statistical relationships. Wood Fiber Sci 15(4): 326-337. https://wfs.swst.org/index.php/wfs/article/view/1498

ImageJ software. 2012. Version 1.44. National Institute of Heath. Bethesda Maryland, USA. https://imagej.nih.gov/ij/

Ishiguri, F.; Hiraiwa, T.; Iizuka, K.; Yokota, S.; Priadi, D.; Sumiasri, N.; Yoshizawa, N. 2009. Radial variation of anatomical characteristics in Paraserianthes falcataria planted in Indonesia. IAWA J 30(3): 343-352. https://doi.org/10.1163/22941932-90000223

Ishiguri, F.; Takeuchi, M.; Makino, K.; Wahyudi, I.; Takashima, Y.; Iizuka, K.; Yokota, S.; Yoshizawa, N. 2012. Cell morphology and wood properties of Shorea acuminatissima planted in Indonesia. IAWA J 33(1): 25-38. https://doi.org/10.1163/22941932-90000077

Kitin, P.; Funada, R.; Sano, Y.; Beeckman, H.; Ohtani, J. 1999. Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus. Ann Bot 84(5): 621-632. https://doi.org/10.1006/anbo.1999.0957

Lei, H.; Milota, M.R.; Gartner, B.L. 1996. Between- and within-tree variation in the anatomy and specific gravity of wood in Oregon white oak (Quercus garryana Dougl.). IAWA J 17(4): 445-461. https://doi.org/10.1163/22941932-90000642

Leles, P.S.D.S; Machado, T.F.F.; Alonso, J.M.; de Andrade, A.M.; da Silva, L.L. 2014. Growth and biomass of Melia azedarach L. at different spacings and technological characteristics of wood for charcoal production. FLORAM 21(2): 214-223. http://dx.doi.org/10.4322/floram.2014.020

Lev-Yadun, S.; Aloni, R. 1993. Effect of wounding on the relations between vascular rays and vessels in Melia azedarach L. New Phytol 124: 339-344. https://doi.org/10.1111/j.1469-8137.1993.tb03824.x

Matsumura, J.; Inoue, M.; Yokoo, K.; Oda, K. 2006. Cultivation and utilization of Japanese fast growing trees with high capability for carbon stock I: potential of Melia azedarach (in Japanese with an English summary). Mokuzai Gakkaishi 52(2): 77-82. https://doi.org/10.2488/jwrs.52.77

Miranda, I.; Almeida, M.H.; Pereira, H. 2001. Influence of provenance, subspecies and site on wood density in Eucalyptus globulus labill. Wood Fiber Sci 33(1): 9-15. https://wfs.swst.org/index.php/wfs/article/view/66

Nasser, N.A. 2008. Effects of sewage effluent irrigation on the chemical components and mechanical properties of Melia azedarach L wood. J Agric Env Sci Alex Univ Egypt 7(3): 138-166. http://www.damanhour.edu.eg/pdf/agrfac/Root1/Vol7_3_6.pdf

Nasser, R.; Al-Meffarrej, H.; Abdel-Aal, M.; Hegazy, S. 2010. Chemical and mechanical properties of Melia azedarach mature wood as affected by primary treated sewage-effluent irrigation. Am-Eurasian J Agric Environ Sci 7(6): 697-704. https://www.idosi.org/aejaes/jaes7(6)/14.pdf

Osei, A.K.; Kimaro, A.A.; Peak, D.; Gillespie, A.W.; Van Rees, K.C.J. 2018. Soil carbon stocks in planted woodlots and Ngitili systems in Shinyanga, Tanzania. Agrofor Syst 92(2): 251-262. https://doi.org/10.1007/s10457-016-0028-7

Palakit, K.; Siripatanadilok, S.; Lumyai, P.; Duangsathaporn, K. 2018. Leaf phenology and wood formation of white cedar trees (Melia azedarach L.) and their responses to climate variability. Songklanakarin J Sci Technol 40(1): 61-68. https://rdo.psu.ac.th/sjstweb/journal/40-1/40-1-7.pdf

Panshin, A.J.; de Zeeuw, C. 1980. Textbook of wood technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada. McGraw-Hill Book Company, New York, USA.

R Core Team. 2016. R: A language and environment for statistical computing: Version 3.3.2. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Saravanan, V.; Parthiban, K.T.; Sekar, I.; Kumar, P.; Vennila, S. 2013. Radial variations in anatomical properties of Melia dubia cav. at five different ages. Sci Res Essays 8(45): 2208-2217. https://academicjournals.org/journal/SRE/article-abstract/5B877B542287

Savidge, R.A. 2003. Tree growth and wood quality. Chapter 1. In: Barnett, J.R.; Jeronimidis, G. (eds.). Wood quality and its biological basis. Blackwell Scientific, Oxford, UK.

Trianoski, R.; Iwakiri, S.; Matos, J.L.M. 2011. Potential use of planted fast-growing species for production of particleboard. J Trop For Sci 23(3): 311-317. https://www.jstor.org/stable/23616976

Tsuchiya, R.; Furukawa, I. 2009a. Radial variation in the size of axial elements in relation to stem increment in Qurercus serrata. IAWA J 30(1): 15-26. https://doi.org/10.1163/22941932-90000199

Tsuchiya, R.; Furukawa, I. 2009b. Radial variation of vessel lumen diameter in relation to stem increment in 30 hardwood species. IAWA J 30(3): 331-342. https://doi.org/10.1163/22941932-90000222

Venson, I.; Guzman, J.A.S.; Talavera, F.J.F.; Richter, H.G. 2008. Biological, physical and mechanical wood properties of Paraiso (Melia azedarach) from a roadside planting at Huaxtla, Jalisco, Mexico. J Trop For Sci 20(1): 38-47. https://www.jstor.org/stable/23616486

Walker, J.C.F. 2006. Primary wood processing: principles and practice (2nd edition). Springer, Dordrecht, Netherlands.

Zhang, S.Y.; Zhong, Y. 1992. Structure-property relationship of wood in East-Liaoning oak. Wood Sci Technol 26: 139-149. https://doi.org/10.1007/BF00194469

Downloads

Published

2021-01-01

Versions

How to Cite

Van Duong, D., Schimleck, L., Tien Dinh, T., & Van Tran, C. (2021). Radial variation in cell morphology of melia azedarach planted in northern vietnam. Maderas-Cienc Tecnol, 23. https://doi.org/10.4067/s0718-221x2021000100407

Issue

Section

Article