Physical and mechanical properties of wood from invasive tree species

Authors

  • Komán Szabolcs
  • David Varga

DOI:

https://doi.org/10.4067/s0718-221x2021000100411

Keywords:

Box elder, green ash, invasive species, strength, tree of heaven

Abstract

Because invasive tree species are being suppressed all over the world, there is a lack of basic information needed for their use in the processing industry. One piece of important information for woodworking applications is the air-dry density, which is 653 kg/m3 in the case of tree of heaven (Ailanthus altissima), 536 kg/m3 for box elder (Acer negundo), and 702 kg/m3 for green ash (Fraxinus pennsylvanica). The order of the 3 species is the same for oven-dry and basic density. In terms of compression and bending, tree of heaven has higher values than green ash. Because the strength of the tree of heaven and the green ash are largely the same as the common ash (Fraxinus excelsior), it can be replaced by these tree species. The properties of box elder wood are significantly different from those of

Downloads

Download data is not yet available.

References

Alden, H.A. 1995. Hardwoods of North America (Gen. Tech. Rep. FPL–GTR–83), U.S. Department of Agriculture, Forest Products Laboratory, Madison, WI., USA. https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr83.pdf

Baptista, P.; Costa, A.P.; Simões, R.M.; Amaral, M.E. 2014. Ailanthus altissima: An alternative fiber source for papermaking. Ind Crops Prod 52: 32-37. https://doi.org/10.1016/j.indcrop.2013.10.008

Barstow, M.; Crowley, D.; Rivers, M.C. 2017. Acer negundo. The IUCN Red List of threatened species. e.T62940A3117065. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T62940A3117065.en

Berki, D. 2014. Eigenschaften und Verwendung des Holzes des Götterbaums (Ailanthus altissima), Master's Thesis, Universität für Bodenkultur Wien, Institut für Holztechnologie und nachwachsende

Rohstoffe, Vienna, Austria. https://litsearch.boku.ac.at/primo-explore/fulldisplay?docid=BOK_alma2136586230003345&context=L&vid=BOK&lang=de_DE

Branquart, E.; Vanderhoeven, S.; Van Landuyt, W.; Van Rossum, F.; Verloove, F. 2010. Invasive species in Belgium, Fraxinus pennsylvanica. Harmonia version 1.2, Belgian Forum on Invasive species. https://ias.biodiversity.be/species/show/134

Caudullo, G.; Houston Durrant, T. 2016. Fraxinus angustifolia in Europe: distribution, habitat, usage and threats. In Online European Atlas of Forest Tree Species. San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., and Mauri, A. (eds.). FISE Comm. Publications Office of the European Union, Luxembourg. pp. e0101d2+ https://forest.jrc.ec.europa.eu/media/atlas/Fraxinus_angustifolia.pdf

Csiszár, Á.; Tiborcz, V. 2012. A fejezetek összeállításának és a fajok jellemzésének szempontjai, In Inváziós növényfajok Magyarországon (in Hungarian). Csiszár, Nyugat-magyarországi Egyetem Kiadó. Sopron, Hungary. https://mek.oszk.hu/11700/11738/11738.pdf

DIN. 1979. DIN 52188: Testing of wood - Determination of ultimate tensile stress parallel to grain. Deutsches Institut für Normung, Berlin, Germany.

DIN. 2003. DIN 68364: Properties of wood species - Density, modulus of elasticity and strength. Deutsches Institut für Normung, Berlin, Germany.

DIN. 1978. DIN 52186: Testing of wood - Bending test. Deutsches Institut für Normung, Berlin, Germany.

DIN. 1981. DIN 52189: Testing of wood - Determination of impact bending strength. Deutsches Institut für Normung, Berlin, Germany.

DIN. 1976. DIN 52185: Testing of wood - Compression test parallel to grain. Deutsches Institut für Normung, Berlin, Germany.

Diler, H.; Acar, M.E.; Balıkçı, E.; Demirci, S.; Erdil, Y.Z. 2017. Withdrawal force capacity of T-Type furniture joints constructed from various heat-treated wood species. BioResources 12(4): 7466-7478. https://bioresources.cnr.ncsu.edu/resources/withdrawal-force-capacity-of-t-type-furniture-joints-constructed-from-various-heat-treated-wood-species/

Drescher, A.; Prots, B. 2016. Fraxinus pennsylvanica - an invasive tree species in Middle Europe: Case studies from the Danube basin. Contributii Botanice LI: 55-69. http://contributii_botanice.reviste.ubbcluj.ro/materiale/2016/Contrib_Bot_vol_51_pp_055-069.pdf

Ednich, E.M.; Chernyavskaya, I.V., Tolstikova, T.N.; Chitao, S.I. 2015. Biology of the invasive species Acer negundo L. in the conditions of the north-west caucasus foothills. Indian J Sci Technol 8(30): 1-3. https://dx.doi.org/10.17485/ijst/2015/v8i30/85426

Feret, P.P. 1985. Ailanthus: variation, cultivation, and frustration. Arboric Urban For 11(12): 361-368.

Giagli, K.; Baar, J.; Fajstavr, M.; Gryc, V.; Vavrcík, H. 2018. Tree-ring width and variation of wood density in Fraxinus excelsior L. and Quercus robur L., growing in floodplain forests. BioResources 13(1): 804-819. https://bioresources.cnr.ncsu.edu/resources/tree-ring-width-and-variation-of-wood-density-in-fraxinus-excelsior-l-and-quercus-robur-l-growing-in-floodplain-forests/

Gilman, F.E.; Watson, D.G. 2006. Fraxinus pennsylvanica ‘Newport’: ‘Newport’ Green. Environmental Horticulture, UF/IFAS Extension ENH427. University of Florida, USA. https://edis.ifas.ufl.edu/pdffiles/ST/ST26800.pdf

Harvald, C.; Olesen, P.O. 1987. The variation of the basic density within the juvenile wood of Sitka spruce (Picea sitchensis). Scand J For Res 2(1-4): 525-537. https://doi.org/10.1080/02827588709382488

Hassan, K.;Tippner, J. 2019. Acoustic properties assessment of neem (Azadirachta indica A. Juss.) wood from trees irrigated with secondarily treated wastewater. BioResources 14(2): 2919-2930. https://bioresources.cnr.ncsu.edu/resources/acoustic-properties-assessment-of-neem-azadirachta-indica-a-juss-wood-from-trees-irrigated-with-secondarily-treated-wastewater/

Kiaei, M. 2013. Radial variation in wood static bending of naturally and plantation grown alder stems. Cell Chem Technol 47(5-6): 339-344. https://www.cellulosechemtechnol.ro/pdf/CCT5-6(2013)/p.339-344.pdf

Kovacs, K.F.; Haight, R.G.; McCullough, D.G.; Mercader, R.J.; Siegert, N.W.; Liebhold, A.M. 2010. Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol Econ 69(3): 569-578. https://doi.org/10.1016/j.ecolecon.2009.09.004

Kowarik, I.; Säumel, I. 2007. Biological flora of Central Europe: A. altissima (Mill.) Swingle Perspect. Plant Ecol Evol Syst 8(4): 207-237. https://doi.org/10.1016/j.ppees.2007.03.002

Krumm, F.; Vítková, L. 2016. Introduced tree species in European forests: opportunities and challenges. European Forest Institute. 423 pp.

Kúdela, J.; Mamoňová, M. 2006. Tree-of-heaven wood (Ailanthus altissima, Mill.) - Structure and properties. In Wood Structure and Properties. S. Kurjatko, J. Kúdela, and R. Lagaňa (eds.). Arbora Publishers, Zvolen, Slovakia. pp. 275-280.

Meier, E. 2015. WOOD! Identifying and Using Hundreds of Woods Worldwide. The wood database.

Miao, X.; Chen, H., Lang, Q.; Bi, Z.; Zheng, X.; Pu, J. 2014. Characterization of Ailanthus altissima veneer modified by urea-formaldehyde pre-polymer with compression drying. BioResources 9(4): 5928-5939. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_4_5928_Miao_Ailanthus_altissima_Veneer

Ónodi, G. 2016. Az idegenhonos, illetve inváziós fafajok élőhelyformáló hatásai. Erdészettudományi Közlemények 6(2): 101-113. (in Hungarian) https://dx.doi.org/10.17164/EK.2016.008

Porté, A.J.; Lamarque, L.J.; Lortie, C.J.; Michalet, R.; Delzon, S. 2011. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity. BMC Ecol 11: 28. https://doi.org/10.1186/1472-6785-11-28

Požgaj, A.; Kurjatko, S.; Chovanec, D.; Babiak, M. 1997. Štruktúra a vlastnosti dreva (in Slovak). Príroda, a.s., Bratislava, Slovakia. pp 488.

Sopushynskyy, I.; Teischinger, A. 2013. Diagnostic features of Fraxinus excelsior L. with wavy-grained wood growing in Ukraine. For Res Papers 74(3): 189-195. https://doi.org/10.2478/frp-2013-0018

Surmiński, J. 1995. Właściwości techniczne i możliwości zastosowania drewna jesionowego [Technical properties of wood and possible uses of ash wood, in Polish, with English summary], In Jesion wyniosły Fraxinus excelsior L. (Nasze Drzewa Leśne 17). Bugała, W. (ed.). Polska Akademia Nauk, Instytut Dendrologii, Sorus, Poznań-Kórnik, Poland. 469–480 pp.

Wagenführ, R. 2007. Holzatlas, Wood Atlas. (6th ed.), Fachbuchverlag im Carl Hanser Verlag, Leipzig, Germany. (in German).

Williamson, G.B.; Wiemann, M.C. 2010. Measuring wood specific gravity...Correctly. Am J Bot 97(3): 519-524. https://doi.org/10.3732/ajb.0900243

Zhang, S.Y. 1997. Wood specific gravity-mechanical property relationship at species level. Wood Sci Technol 31(3): 181-191. https://doi.org/10.1007/BF00705884

Downloads

Published

2021-01-01 — Updated on 2020-12-14

Versions

How to Cite

Szabolcs, K., & Varga, D. (2020). Physical and mechanical properties of wood from invasive tree species. Maderas-Cienc Tecnol, 23, 1–8. https://doi.org/10.4067/s0718-221x2021000100411 (Original work published January 1, 2021)

Issue

Section

Article