Influence of harvest region on properties of cambará wood

Authors

  • Vinicius Borges de Moura Aquino
  • Tulio Hallak Panzera
  • Julio Cesar Molina
  • André Luis Christoforo
  • Francisco Antonio Rocco Lahr

Keywords:

Density, Erisma uncinatum, mechanical properties, shrinkage, statistical analysis, timber structures

Abstract

This research intends to evaluate the relation, aided by the Brazilian Standard ABNT NBR 7190 and statistical analysis (Kruskal-Wallis ANOVA and bootstrap technique), between physical and mechanical properties of Cambará-Rosa wood harvested from three different regions: Vera, Mucajaí and South Rondonia. In addition, the possibility to estimate (regression models) physical and mechanical properties in function of apparent density was analyzed. Different climate and soil conditions which tree thrives may influence its growth and, consequently, its properties values. The results of ANOVA indicated an elevated equivalence index for all three regions. The bootstrap technique led to similar results for Vera and Mucajai regions, and for South Rondonia region, equivalence index equals to 89 %. The ANOVA results to estimate physical and mechanical properties in function of apparent density indicated that it is not possible to perform such estimates for Cambará-Rosa wood species.

Downloads

Download data is not yet available.

References

ABNT NBR. 1997. NBR 7190: Projeto de estruturas de madeira. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, Brasil. www.abnt.org.br

Adamopoulos, S.; Passialis, C. 2010. Relationship of toughness and modulus of elasticity in static bending of small clear spruce wood specimens. Eur J Wood Prod 68(1): 109–111. http://dx.doi.org/10.1007/s00107-009-0365-6

Almeida, T.H.; Almeida, D.H.; Christoforo, A.L.; Chahud, E.; Branco, L.A.M. N.; Lahr, F.A.R. 2016. Density as Estimator of Strength in Compression Parallel to the Grain in Wood. Int J of Mat Eng 6(3): 67–71. http://dx.doi.org/10.5923.j.ijme.20160603.01

Aquino, V.B.M.; Almeida, J.P.B; Almeida, D.H.; Almeida, T.H.; Panzera, T.H.; Christoforo, A.L.; Lahr, F.A.R. 2018. Physical and Mechanical Characterization of Copaifera sp. Wood Specie. Int J of Mat Eng 8(3): 55–58. http://dx.doi.org/10.5923.j.ijme.20180803.03

Araújo, H.J.B. 2007. Relações funcionais entre propriedades físicas e mecânicas de madeiras tropicais brasileiras. Floresta 37(3): 399–416. http://dx.doi.org/ 10.5380/rf.v37i3.9937

Beech, E.; Rivers, M.; Oldfield, S.; Smith, P.P. 2017. GlobalTreeSearch: The first complete global database of tree species and country distributions. J Sust Forestry 36(5): 454–489. http://dx.doi.org/ 10.1080/10549811.2017.1310049

BRASIL (Ministério do Meio Ambiente). 2018. Serviço Florestal Brasileiro. Cedrinho. MMA, Brasília, Brazil. http://sistemas.florestal.gov.br/madeirasdobrasil/caracteristicas.php?ID=98&caracteristica=80.

Cardoso, C.C.; Moutinho, V.H.P.; Melo, L.O.; Sousa, L.K.V.S.; Souza, M.R. 2012. Caracterização físico-mecânica de madeiras amazônicas com aptidão tecnológica para comercialização. Cienc Agrar 55(3): 176–183. http://dx/doi.org/10.4322/rca.2012.053

Christoforo, A.L.; Blecha, K.A.; Carvalho, A.L.C.; Rezende, L.F.R.; Lahr, F.A.R. 2013. Characterization of Tropical Wood Species for Use in Civil Constructions. J Civ Eng Research 3(3): 98–103. http://dx.doi.org/10.5923.j.jce.20130303.02

Christoforo, A.L.; Silva, S.A.M.; Panzera, T.H.; Lahr, F.A.R. 2014: Estimative of Wooden Toughness by the Apparent Density and Bending Strength. Int J Mat Eng 4(2): 49–55. http://dx.doi.org/10.5923/j.ijme.20140402.01

Christoforo, A.L.; Arroyo, F.N.; Silva, D.A.L.; Panzera, T.H.; Lahr, F.A.R. 2017a. Full characterization of Calycophyllum multiflorum wood specie. Eng Agric 37(4): 637–643. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n4p637-643/2017

Christoforo, A.L.; Aftimus, B.H.; Panzera, T.H.; Machado, G.O.; Lahr, F.A.R. 2017b. Physico-mechanical characterization of the Anadenanthera colubrina wood specie. Eng Agric 37(2): 376–384. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n2p376-384/2017

Christoforo, A.L.; Couto, N.G.; Almeida, J.P.B.; Aquino, V.B.M; Lahr,F.A.R. 2020. Apparent Density as na Estimator of Wood Properties Obtained in Tests where Failure is Fragile. Eng Agric 40(1): 105–112. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v40n1p105-112/2020

Dadzie, P.K.; Amoah, M. 2015. Density, some anatomical properties and natural durability of stem and branch wood of two tropical hardwood species for ground applications. Eur J Wood Wood Prod 73(6): 759–773. http://dx.doi.org/ 10.1007/s00107-015-0925-x

Dias, F.M.; Lahr, F.A.R. 2004. Estimativa de propriedades de resistência e rigidez da madeira através da densidade aparente. Sci For 65: 102–113. https://www.ipef.br/publicacoes/scientia/

Ferreira, B.S.; Silva, J.V.F.; Campos, C.I. 2017. Static bending strength of heat-treated and chromated copper arsenate-treated plywood. BioResour 12(3): 6276–6282. http://dx.doi.org/10.15376/biores.12.3.6276-6282

Hurmekoski, E.; Jonsson, R.; Nord, T. 2015. Context, drivers, and future potential for wood-frame multi-story construction in Europe. Tech Forecast and Social Change 99: 181–196. http://dx.doi.org/10.1016/j.techfore.2015.07.002

IPT (Instituto de Pesquisas Tecnológicas). 2018. Informações sobre madeiras. Cedrinho. IPT, São Paulo, Brazil. http://www.ipt.br/informacoes_madeiras3.php?madeira=9.

Komariah, R.N.; Hadi, Y.S.; Massijaya, M.Y.; Suryana, J. 2015. Physical-mechanical properties of glued laminated timber made from tropical small-diameter logs grown in Indonesia. J Korean Wood Sci Tech 43(2): 156–167. http://dx.doi.org/10.5658/WOOD.2015.43.2.156

Lahr, F.A.R.; Christoforo, A.L.; Silva, C.E.D.; Andrade Junior, J. R.; Pinheiro, R. V. 2016a. Evaluation of physical and mechanical properties of Jatobá (Hymenaea stilbocarpa Hayne) wood with different levels of moisture content and different regions of extracions. Revista Árvore 40(1): 147–154. http://dx.doi.org/ 10.1590/0100-67622016000100016

Lahr, F.A.R.; Arroyo, F.N.; Almeida, T.H.; Almeida Filho, F.M.; Mendes, I.S.; Christoforo, A.L. 2016b. Full Characterization of Erisma uncinatum Warm Wood Specie. Int J Mat Eng 6(5): 147–150. http://dx.doi.org/10.5923.j.ijme.20160605.01

Lahr, F.A.R.; Aftimus, B.H.C.; Arroyo, F.N.; Almeida, D. H.; Christoforo, A.L.; Chahud, E.; Branco, L.A.M.N. 2016c. Full Characterization of Vatairea sp. Wood Specie. Int J Mater Eng 6(3): 92–96. http://dx.doi.org/10.5923.j.ijme.20160603.05

Lorenzi, H. 1998. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. v. 2. Plantarum, Nova Odessa, Brasil.

Machado, J.S.; Louzada, J.L.; Santos, A.J.A.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R. M. S.; Pereira, H. 2014. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mat Design 56: 975–980. http://dx.doi.org/10.1016/j.matdes.2013.12.016

Mamiraua Institute. 2008. Instituto de Desenvolvimento Sustentável. MCTIC, Tefé, Amazonas, Brazil. https://www.mamiraua.org.br/downloads/programas/

Montgomery, D.C. 2012. Design and analysis in experiments. John Wiley & Sons, Arizona, USA.

Morando, T.C.; Christoforo, A.L.; Aquino, V.B.M.; Lahr, F.A.R., Rezende, G.B.M.; Ferreira, R.T.L. 2019. Characterization of the Wood Species Qualea albiflora for Structural

Purposes. Wood Res-Slovakia 64(5): 769-776. http://www.woodresearch.sk/wr/201905/02.pdf

Muttil, N.; Ravichandra, G.; Bigger, S.W.; Thorpe, G.R.; Shailaja, D.; Singh, S. K. 2014. Comparative Study of Bond Strength of Formaldehyde and Soya based Adhesive in Wood Fibre Plywood. Proc Mat Sci 6: 2–9. http://dx.doi.org/10.1016/j.mspro.2014.07.002

Nascimento, M.F.; Almeida, D.H.; Almeida, T.H.; Christoforo, A.L.; Lahr, F.A.R. 2018. Physical and Mechanical Properties of Sabiá Wood (Mimosa caesalpiniaefolia Bentham.). Curr J Appl Sci Techol 25(4): 1–5. http://dx.doi.org/10.9734/CJAST/2017/38747

Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; Allwood, J.; Dupree, P.; Linden, P.F.; Scherman, O. 2017. The wood from the trees: The use of timber in construction. Renew Sustain Energy Rev 68: 333–359. http://dx.doi.org/10.1016/j.rser.2016.09.107

Ruiz-Aquino, F.; González-Peña, M.M.; Valdéz-Hernández, J.I.; Romero-Manzanares, A.; Fuentes-Salinas, M. 2018. Mechanical properties of wood of two Mexican oaks: relationship to selected physical properties. Eur J Wood Wood Prod 76(1): 69–77. http://dx.doi.org/10.1007/s00107-017-1168-9

Segundinho, P.G.D.A.; Zangiácomo, A.L.; Carreira. M.R.; Dias, A.A.; Lahr, F.A.R. 2013. Avaliação de Vigas de Madeira Laminada Colada de Cedrinho (Erisma uncinatum Warm.). Cerne 19(3): 441–449. http://www.cerne.ufla.br/site/index.php/CERNE

Silva, C.E.G.; Almeida, D.H.; Almeida, T.H.; Chahud, E.; Branco, L.A.M.N.; Campos, C.I.; Lahr, F.A.R.; Christoforo, A.L. 2018. Influence of the Procurement Site on Physical and Mechanical Properties of Cupiúba Wood Species. BioResources 13(2): 4118–4131. http://dx.doi.org/10.15376/biores.13.2.4118-4131

Wieruszewski, M.; Mazela, B. 2017. Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Drv Ind 68(4): 359–367. http://dx.doi.org/10.5552/drind.2017.1728

Downloads

Published

2021-01-01

How to Cite

Borges de Moura Aquino, V. ., Hallak Panzera, T. ., Cesar Molina, J. ., Luis Christoforo, A. ., & Antonio Rocco Lahr, F. . (2021). Influence of harvest region on properties of cambará wood. Maderas-Cienc Tecnol, 23, 1–12. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4779

Issue

Section

Article