Kinetic analysis of thermal degradation of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis from timber industry

Authors

  • Camily Daiane Cavinato
  • Matheus Poletto

Keywords:

Activation energy, Criado method, Flynn-Wall-Ozawa, thermogravimetry, thermal stability

Abstract

Thermal analysis is a powerful tool to predict the composition and thermal stability of different materials. In this work, thermogravimetric analysis of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis was carried out at four different heating rates (5 °C·min-1, 10 °C·min-1, 20 °C·min-1 and 40 °C·min-1) in a non-isothermal condition. The degradation kinetics was evaluated based on Flynn-Wall-Ozawa and Criado methods. The half-life time of wood degradation reaction was also studied. The wood thermal degradation process in an oxidizing atmosphere can be divided in dehydration, devolatilization, and combustion. The kinetic results revels apparent activation energy values of 130-240 kJ·mol-1 for Tectona grandis, 150-191 kJ·mol-1 for Marmaroxylon racemosum and 188-205 kJ·mol-1 for Cedrela odorata, when conversion values ranged from 0,1-0,5. The most probable degradation mechanism for wood species studied is a diffusion model based on a three-dimensional diffusion. Cedrela odorata presented the lowest reaction half-life time while Marmaroxylon racemosum showed the highest. On the basis of these results, it can be concluded that Flynn-Wall-Ozawa and Criado methods associated with half-life time of reaction may contribute to better understand the wood degradation before use it in polymer composites.

Downloads

Download data is not yet available.

References

Adhikary, K.B.; Pang, S.; Staiger, M.P. 2008. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B: Eng 39(5): 807–815. https://doi.org/10.1016/j.compositesb.2007.10.005

Ali, I.; Bahaitham, H.; Naibulharam, R. 2017. A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresour Technol 235: 1–11. https://doi.org/10.1016/j.biortech.2017.03.089

AlMaadeed, M.A.; Nógellová, Z.; Mičušík, M.; Novák, I.; Krupa, I. 2014. Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder. Mater Des 53: 29–37. https://doi.org/10.1016/j.matdes.2013.05.093

ASTM. 2018. E698-18: Standard Test Method for Kinetic Parameters for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method. ASTM International, West Conshohocken, PA, United States. https://www.astm.org/Standards/E698.htm

Balogun, A.O.; Lasode, O.A.; McDonald, A.G. 2014. Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresour Technol 156: 57–62. https://doi.org/10.1016/j.biortech.2014.01.007

Barbos, J.D.V.; Azevedo, J.B.; Cardoso, P. da S.M.; da Costa Garcia Filho, F.; del Río, T.G. 2020. Development and characterization of WPCs produced with high amount of wood residue. J Mater Res Technol 9(5): 9684–9690. https://doi.org/10.1016/j.jmrt.2020.06.073

Batista, D.C.; da Silva, J.G.M.; Andrade, W.S. de P.; Vidaurre, G.B. 2015. Desempenho operacional de uma serraria de pequeno porte do Município de Alegre, Espírito Santo, Brasil. Floresta 45(3): 487–496. https://doi.org/10.5380/rf.v45i3.34441

Bianchi, O.; Martins, J.D.N.; Fiorio, R.; Oliveira, R.V.B.; Canto, L.B. 2011. Changes in activation energy and kinetic mechanism during EVA crosslinking. Polym Test 30(6): 616–624. https://doi.org/10.1016/j.polymertesting.2011.05.001

Bianchi, O.; Oliveira, R.V.B.; Fiorio, R.; Martins, J.D.N.; Zattera, A.J.; Canto, L.B. 2008. Assessment of Avrami, Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test 27(6): 722–729. https://doi.org/10.1016/j.polymertesting.2008.05.003

Cabeza, A.; Sobrón, F.; Yedro, F.M.; García-Serna, J. 2015. Autocatalytic kinetic model for thermogravimetric analysis and composition estimation of biomass and polymeric fractions. Fuel 148: 212–225. https://doi.org/10.1016/j.fuel.2015.01.048

Drozin, D.; Sozykin, S.; Ivanova, N.; Olenchikova, T.; Krupnova, T.; Krupina, N.; Avdin, V. 2020. Kinetic calculation: Software tool for determining the kinetic parameters of the thermal decomposition process using the Vyazovkin Method. Software X 11: 100359. https://doi.org/10.1016/j.softx.2019.100359

Erceg, M.; Krešić, I.; Vrandečić, N.S.; Jakić, M. 2018. Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J Therm Anal Calorim 131(1): 325–334. https://doi.org/10.1007/s10973-017-6349-6

Gheith, M.H.; Aziz, M.A.; Ghori, W.; Saba, N.; Asim, M.; Jawaid, M.; Alothman, O.Y. 2019. Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J Mater Res Technol 8(1): 853–860. https://doi.org/10.1016/j.jmrt.2018.06.013

Lengowski, E.C.; Bonfatti, E.A.; Nisgoski, S.; Bolzon de Muñiz, G.I.; Klock, U. 2020. Properties of thermally modified teakwood. Maderas-Cienc Tecnol 23(23): 1–16. https://doi.org/10.4067/s0718-221x2021000100410

Li, L.; Zhao, N.; Fu, X.; Shao, M.; Qin, S. 2013. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres. Bioresour Technol 140: 152–157. https://doi.org/10.1016/j.biortech.2013.04.121

Mohd Yusof, N.; Md Tahir, P.; Lee, S.H.; Sabaruddin, F.A.; Mohammad Suffian James, R.; Asim Khan, M.; Lee, C.H.; Roseley, A.S.M. 2020. Thermal properties of Acacia mangium Cross Laminated Timber and its gluelines bonded with two structural adhesives. Maderas-Cienc Tecnol 23(23): 1–10. https://doi.org/10.4067/s0718-221x2021000100402

Neves, R.M.; Lopes, K.S.; Zimmermann, M.V.G.; Poletto, M.; Zattera, A.J. 2019. Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals. Cellulose 2: 4417–4429. https://doi.org/10.1007/s10570-019-02392-2

Neves, R.M.; Ornaghi, H.L.; Ornaghi, F.G.; Amico, S.C.; Zattera, A.J. 2020. Degradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites. J Therm Anal Calorim 0123456789. https://doi.org/10.1007/s10973-020-10316-7

Oluoti, K.; Richards, T.; Doddapaneni, T.R.K.; Kanagasabapathi, D. 2014. Evaluation of the pyrolysis and gasification kinetics of tropical wood biomass. BioResources 9(2): 2179–2190. https://doi.org/10.15376/biores.9.2.2179-2190

Ornaghi, H.L.; Ornaghi, F.G.; Neves, R.M.; Monticeli, F.; Bianchi, O. 2020. Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose 27(9): 4949–4961. https://doi.org/10.1007/s10570-020-03132-7

Poletto, M. 2016. Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas-Cienc Tecnol 18(3): 435–442. https://doi.org/10.4067/S0718-221X2016005000039

Poletto, M. 2017. Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas-Cienc Tecnol 19(1): 63–74. https://doi.org/10.4067/S0718-221X2017005000006

Poletto, M.; Zattera, A.J.; Santana, R.M.C. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresour Technol 126: 7–12. https://doi.org/10.1016/j.biortech.2012.08.133

Ramos, W.F.; Ruivo, M.L.P.; Jardim, M.A.G; Sousa, L.M. 2018. Generation of wood waste from the forest based sector in the metropolitan region of Belém, Pará State. Cienc Florest 28: 1823-1830. http://dx.doi.org/10.5902/1980509835341

Shebani, A.N.; van Reenen, A.J.; Meincken, M. 2008. The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471(1–2): 43–50. https://doi.org/10.1016/j.tca.2008.02.020

Shebani, A.N.; van Reenen, A.J.; Meincken, M. 2009. The effect of wood extractives on the thermal stability of different wood-LLDPE composites. Thermochim Acta 481: 52–56. https://doi.org/10.1016/j.tca.2008.10.008

Sheshmani, S.; Ashori, A.; Farhani, F. 2012. Effect of extractives on the performance properteis of wood flour-polypropylene composites. J Appl Polym Sci 123: 1563-1567. https://doi.org/10.1002/app.34745

Slopiecka, K.; Bartocci, P.; Fantozzi, F. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97: 491–497. https://doi.org/10.1016/j.apenergy.2011.12.056

Sobek, S.; Werle, S. 2020. Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel 261: 116459. https://doi.org/10.1016/j.fuel.2019.116459

Tenorio, C.; Moya, R. 2013. Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth speceis in Costa Rica. Thermochim Acta 563: 12-21. https://doi.org/10.1016/j.tca.2013.04.005

Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil 93(1): 90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012

Downloads

Published

2021-01-01

How to Cite

Daiane Cavinato, C. ., & Poletto, M. . (2021). Kinetic analysis of thermal degradation of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis from timber industry . Maderas-Cienc Tecnol, 23, 1–10. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/4785

Issue

Section

Article