Preparation and performance of tannin–glyoxal–urea resin-bonded grinding wheel loaded with sio2 reinforcing particles


  • Jun Zhang
  • Bowen Liu
  • Yunxia Zhou
  • Hisham Essawy
  • Jinxin Li
  • Qian Chen
  • Xiaojian Zhou
  • Guanben Du


Bark, bio-based resin, glyoxal, grinding wheel, mimosa, tannin, urea


In this study, an easily prepared bio-based abrasive grinding wheel based on tannin–glyoxal–urea (TGU)thermosetting matrix is presented.The synthesised resin was prepared via co-polycondensation reaction of glyoxal and ureawith condensed tannin, which is a forest-derived product. Fourier transform infrared spectroscopy and electrospray ionisation mass spectrometry results confirmed that urea and glyoxal react well under acidic conditions and that –(OH)CH–NH–group is primarily involved in TGU cross-linking. Differential scanning calorimetry, thermomechanical analysis and thermogravimetric analysis investigations showed that the preparation of TGU resin is easier compared to commercial phenol–formaldehyde (PF) resin; moreover, TGU resin has a more robust chemical network structure, which contributes efficiently to heat resistance and improved mechanical properties. This observation is supported by Brinell hardness, compression resistance and grinding testing; these showed that the new grinding wheel acquired higher hardness, superior resistance against compression and stronger abrasion resistance compared with a PF-based grinding wheel prepared in the laboratory. Moreover, few holes and no cracks were found in the new grinding wheel.


Download data is not yet available.


Abdullah, U.H.B.; Pizzi, A. 2013. Tannin-furfuryl alcohol wood panel adhesives without formaldehyde. Eur J Wood Wood Prod 71(1): 131–132.

Beckert, M.; Menzel, M.; Töll, F.J.; Bruchmann, B.; Mülhaupt, R. 2015. Nitrogenated graphene and carbon nanomaterials by carbonization of polyfurfuryl alcohol in the presence of urea and dicyandiamide. Green Chem 17: 1032–1037.

Celzard, A.; Zhao, W.; Pizzi, A.; Fierro, V. 2010. Mechanical properties of tannin-based rigid foams undergoing compression. Mat Sci Eng: A 527(16): 4438–4446.

Deng, S.D.; Pizzi, A. ; Du, G.B.; Zhang, J.Z. ; Zhang, J. 2014a. Synthesis, Structure, and Characterization of Glyoxal-Urea-Formaldehyde Cocondensed Resins. J Applied Polymer Science: 131(21): 41009-41016. 10.1002/app.41009

Deng, S.D.; Du, G.B.; Li, X.H.; Pizzi, A. 2014b. Performance and reaction mechanism of zero formaldehyde-emission urea-glyoxal (UG) resin. J Taiwan Inst Chem E 45(4): 2029-2038.

Hussein, A.S.; Ibrahim, K.I.; Abdulla, K.M. 2011. Tannin-Phenol Formaldehyde Resins As Binders for Cellulosic Fibers: Mechanical Properties. Nat Resour 2(2): 98-101.

Klocke, F.; Soo, S.L.; Karpuschewski, B.; Webster, J.A.D.; Novovic, A.; Elfizy, D.; Axinte, S.; Tonissen. 2015. Abrasive machining of advanced aerospace alloys and composites. Cirp Ann-Manuf Techn 64(2): 581-604.

Lacoste, C.; Basso, M.C.; Pizzi, A.; Laborie, M.P.; D. Garcia; Celzard, A. 2013. Bioresourced pinetannin/furanic foams with glyoxal and glutaraldehyde. Ind Crop Prod 45: 401-405.

Lacoste, C.; Pizzi, A.; Laborie, M.P.; Celzard, A. 2014. Pinus pinaster tannin/furanic foams: Part II Physical properties. Ind Crop Prod 61: 531-536.

Lagel, M.C.; Pizzi, A.; Basso, M.C.; Abdalla, S. 2015a. Development and characterization of abrasive grinding wheels with a tannin-furanic resins matrix. Ind Crop Prod 65: 343-348.

Lagel, M.C.; Zhang, J.; Pizzi, A. 2015b. Cutting and grinding wheels for angle grinders with a bioresin matrix. Ind Crops Prod 67: 264-269.

Li, C.; Zhang, J.; Yi, Z.; Yang, H.; Zhao, B.; Zhang, W.; Li, J. 2015.Preparation and characterization of a novel environmentally friendly phenol–formaldehyde adhesive modified with tannin and urea. Int J Adhes Adhes 66: 26–32.

Li, M.C.; Zhang, F.L.; Zhou, Y.M.; Li. W.X.; Wu. S.X.; Wu. S.H. 2020.Preparation and performance of resin-bonded grinding wheel with braze-coated diamond grits. Diam Relat Mater 101: 107619.

Li, W.; Lee, L.J. 2000. Low temperature cure of unsaturated polyester resins with thermoplastic additives: I. Dilatometry and morphology study. Polymer 41(2): 685-696.

Li, X.; Nicollin, A.; Pizzi, A.; Zhou, X. J.; Sauget, A.; Delmotte, L. 2013. Natural tannin-furanic thermosetting moulding plastics. RSC Adv 3(39): 17732-17740.

Luo, M.; Li, Y.W.; Sang, S.B.; Zhao, L.; Jin, S.L.; Li, Y.B. 2012.In situ formation of carbon nanotubes and ceramic whiskers in Al2O3–C refractories with addition of Ni-catalyzed phenolic resin. Mat Sci Eng 558: 533-542.

Manoharan, S.; Ramadoss, G.; Suresha, B.; Vijay, R. 2015.Influence of fiber reinforcement and abrasive particle size on three-body abrasive wear of hybrid friction composites. Appl Mech Mater 766-767: 156-161.

Moubarik, A.; Pizzi, A.; Allal, A.; Charrier, B. 2009. Corn starch and tannin in phenol–formaldehyde resins for plywood production. Ind Crops Prod 30(2): 188-193.

Pasch, H.; Pizzi, A.; Rode, K. 2001. MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer 42(18): 7531–7539.

Pizzi, A. 1994. Advanced Wood Adhesives Technology. Advanced wood adhesives technology. M. Dekker.

Pizzi, A.; Tondi, G.; Pasch, H. 2008. MALDI-TOF structure determination of complex thermoset networks—polyflavonoid tannin-furanic rigid foams. J Appl Polym Sci 110(3): 1451–1456.

Robie, N. P. 1957. Referencing styles for journals-abrasive bodies. U. S. Patent, 2806772. U.S. Patent, 3925034A.

Rowse, R.A.; Stinchfield, C.P. 1959. Referencing styles for journals-phenolic resin boned grinding wheels. U.S. Patent, 3041156.

Sauget, A.; Zhou, X.; Pizzi, A. 2014.Tannin-resorcinol-formaldehyde resin and flax fiber biocomposites. J Renew Mater 2(3): 173–181.

Tondi, G. 2017. Tannin-based copolymer resins: synthesis and characterization by solid state 13C -NMR and FT-IR Spectroscopy. Polymer 9(6): 223-239.

Tondi, G.; Pizzi, A.; Masson, E.; Celzard, A. 2008a.Analysis of gases emitted during carbonization degradation of polyflavonoid tannin/furanic rigid foams. Polym Degrad Stabil 93(8): 1539-1543.

Tondi, G.; Pizzi, A.; Olives, R. 2008b. Natural tannin-based rigid foams as insulation for doors and wall panels. Maderas-Cienc Tecnol 10(3): 219-227.

Tondi, G.; Pizzi, A.; Pasch, H.; Celzard, A. 2008c.Structure degradation, conservation and rearrangement in the carbonisation of polyflavonoid tannin/furanic rigid foams-A MALDI-TOF investigation. Polym Degrad Stabil 93(5): 968-975.

Wang, H.Y.; Lu, R.G.; Huang, T.; Ma, Y.N.; Cong, P.H.; Li, V. 2011.Effect of grafted polytetrafluoroethylene Nanoparticles on the mechanical and tribological performances of phenol resin. Mat Sci Eng A 528(22): 6878-6886.

Wu, Z.G.; Lei, H.; Cao, M.; Xi, X.D.; Liang, J.K.; Du, G.B. 2016.Soy-based adhesive cross-linked by melamine-glyoxal and epoxy resin. J Adhesion Sci Technol 19(30): 2120-2129.

Zhang, J.; Luo, H.; Pizzi, A.; Du, G.B.; Deng, S.D. 2015.Preparation and Characterization of Grinding Wheels Based on a Bioresin Matrix and Glass Sand Abrasives. Bioresources 10(3): 5369-5380.

Zhang, J.; Xi, X.D.; J.K. Liang, Pizzi, A.; Du, G.B.; Deng, S.D. 2019. Tannin-based adhesive cross-linked by furfuryl alcohol–glyoxal and epoxy resins. Int J Adhes Adhes 94: 47-52.

Zhou, X.J.; Li, B.; Xu, Y.; Essawy, H.; Wu, Z.G.; Du, G.B. 2019.Tannin-furanic resin foam reinforced with cellulose nanofibers (CNF). Ind Crops Prod 134: 107-112.

Zuo, Y.F.; Liu, W.J.; Xiao, J.H.; Li, X.J.; Zhao, X.; Wu, Y.Q. 2019.NaOH and Ba(OH)2 Compound Catalyzed PhenolResorcinol-Formaldehyde Copolycondensation Resin Adhesive for Recombined Bamboo. Journal of Wuhan University of Technology-Mater. Sci Educ-Netherlands 34(2): 459-464.




How to Cite

Zhang, J. ., Liu, B. ., Zhou, Y., Essawy, H. ., Li, J. ., Chen, Q. ., Zhou, X. ., & Du, G. . (2021). Preparation and performance of tannin–glyoxal–urea resin-bonded grinding wheel loaded with sio2 reinforcing particles. Maderas-Cienc Tecnol, 23, 1–16. Retrieved from