Simultaneous treatment with oil heat and densification on physical properties of Populus × canadensis wood

Authors

  • Antonio Villasante
  • Santiago Vignote
  • Alvaro Fernandez-Serrano
  • Rubén Laina

DOI:

https://doi.org/10.4067/s0718-221x2022000100405

Keywords:

Age of the oil, compression-set, olive oil, springback, wood density

Abstract

Samples of wood from Populus × canadensis (9,5 % moisture) were treated with olive oil at 195 °C simultaneously with 15 % or 30 % compression densification, and the results were compared with samples subjected to oil heat treatment without densification, and control samples. The density of the treated samples increased by 18 %, 43 % and 1,5 % respectively, and barely changed over the six subsequent months stored inside the laboratory room (at approximately 65 % RH, 20 °C).  This was due to the fact that the slight weight increment caused by the additional moisture content was offset by the increase in volume from the springback effect. When subjected to atmospheres with different relative humidities, the treated samples stabilised at the same time as the control samples, although the treated samples had a significantly lower moisture absorption than the control samples. It was also observed that the hygroscopic shrinkage in  oil heat densification treatment samples was approximately half those of the control samples. The initial densification was partially lost as a result of springback: approximately 3 % in the first springback at a relative humidity of 65 % RH, and an additional 4 % in the second springback to a relative humidity of 85 % RH. Once this latter relative humidity had been attained, no new losses in densification were observed. The ageing of the oil used in the treatment caused a slight loss of densification in the densest samples.

Downloads

Download data is not yet available.

References

AITIM. 1997. Especies de maderas para carpintería, construcción y mobiliario. Asociación de Investigación Técnica de Industrias de la Madera y Corcho (AITIM), Madrid, Spain.

Bak, M.; Nemeth, R. 2012. Modification of wood by oil heat treatment. In Proceedings of the International Scientific Conference on Sustainable Development & Ecological Footprint. Sopron, Hungary.

Dubey, M.K.; Pang, S.; Walker, J. 2011. Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiata. Eur J Wood Prod 69: 255–262. https://doi.org/10.1007/s00107-010-0431-0

Dubey, M.K.; Pang, S.; Walker, J. 2012a. Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66(1): 49–57. https://doi.org/10.1515/HF.2011.117

Dubey, M.K., Pang, S.; Walker, J. 2012b. Oil uptake by wood during heat-treatment and post-treatment cooling , and effects on wood dimensional stability. Eur J Wood Prod 70: 183–190. https://doi.org/10.1007/s00107-011-0535-1

Dubey, M. K.; Pang, S.; Chauhan, S.; Walker, J. 2016. Dimensional stability, fungal resistance and mechanical properties of radiata pine after combined thermo-mechanical compression and oil heat-treatment. Holzforschung 70(8): 793–800. https://doi.org/10.1515/hf-2015-0174

European Committee for Standardization. 2002. EN 13183-1: Moisture content of a piece of sawn timber. Part 1: Determination by oven dry method. CEN. Brussels, Belgium. https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:7839,6156&cs=100F48F7330BA2CCD26D59BF5D87DFAD5

Fang, C.H.; Cloutier, A.; Blanchet, P.; Koubaa, A.; Mariotti, N. 2011. Densification of wood veneers combined with oil- heat treatment. part I: dimensional stability. BioResources 6(1): 373–385. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_1_0373_Fang_CBKM_Densification_Wood_Veneers_Oil_Heat

Forest Products Laboratory. 2010. Wood handbook—Wood as an engineering material. Forest Products Laboratory, Department of Agriculture, Madison, WI, USA. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf

Fullana, A.; Carbonell-Barrachina, A.A.; Sidhu, S. 2004. Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. J Agric Food Chem 52(16): 5207–5214. https://doi.org/10.1021/jf035241f

Gašparík, M.; Gaff, M.; Šafaříková, L.; Vallejo, C.R.; Svoboda, T. 2016. Impact bending strength and Brinell hardness of densified hardwoods. BioResources 11(4): 8638–8652.

https://doi.org/10.15376/biores.11.4.8638-8652

Hsu, W.E.; Schwald, W.; Schwald, J. 1988. Chemical and physical changes required for producing dimensionally stable wood-based composites. Wood Sci Technol 22: 281–289. https://doi.org/10.1007/BF00386023

Istok, I.; Sedlar, T.; Sefc, B.; Sinkovic, T.; Perkovic, T. 2016. Physical Properties of Wood in Poplar Clones ’I-214’ and ’S1-8’. Drv Ind 67(2): 163–170. https://doi.org/10.5552/drind.2016.1604

Jalaludin, Z.; Hill, C.A.S.; Samsi, H.W., Husain, H.; Xie, Y. 2010. Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood-Horrobin model. Holzforschung 64(6): 763–770. https://doi.org/10.1515/hf.2010.100

Kamke, F.A. 2006. Densified radiata pine for structural composites. Maderas-Cienc Tecnol 8(2): 83–92. https://scielo.conicyt.cl/pdf/maderas/v8n2/art02.pdf

Kawai, S.; Wang, Q.; Sasaki, H.; Tanahashi, M. 1992. Production of compressed laminated veneer lumber by steam pressing. In Proceedings of the Pacific Rim Bio-Based Composites Symposium, Rotorua, New Zealand. pp. 121–128.

Kollmann, F. 1959. Tecnología de la madera y sus aplicaciones. Vol I. 1st edition. Instituto Forestal de Investigaciones y Experiencias y Servicio de la Madera, Madrid, Spain.

Kollmann, F.P.; Kuenzi, E.W.; Stamm, A.J. 1975. Principles of wood science and technology. Vol. II Wood based materials. 1st edition. Springer-Verlag, New York-Heidelberg-Berlin.

Kutnar, A.; Kamke, F.A.; Sernek, M. 2008. The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh Werkst 66: 439–446. https://doi.org/10.1007/s00107-008-0259-z

Kutnar, A.; Sernek, M. 2007. Densification of wood. Zbornik Gozdarstva in Lesarstva 82: 53–62. http://www.gozdis.si/zbgl/2007/zbgl-82-6.pdf

Laborie, M.P.G. 2006. The temperature dependence of wood relaxations: A molecular probe of the woody cell wall. In: Proceedings of the Characterization of the Cellulosic Cell Wall, Blackwell Publishing, Grand Lake, Colorado, USA. pp 87–94. https://doi.org/10.1002/9780470999714.ch7

Laskowska, A. 2020. Impact of cyclic densification on bending strength and modulus of elasticity of wood from temperate and tropical zones. BioResources 15(2): 2869–2881. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2020/03/BioRes_15_2_2869_Laskowska_Impact_Thermo_mechan_Densification_Bending_Str_MOE_Wood_Zones_16914.pdf

Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.;Tahir, P.M. 2018. Thermal treatment of wood using vegetable oils : A review. Constr Build Mater 181: 408–419. https://doi.org/10.1016/j.conbuildmat.2018.06.058

Li, X.; Bremer, G.C.; Connell, K.N.; Ngai, C.; Pham, Q.A.T.; Wang, S.; Flynn, M.; Ravetti, L.; Guillaume, C.; Wang, Y.; Wang, S.C. 2016. Changes in chemical compositions of olive oil under different heating temperatures similar to home cooking. Journal of Food Chemistry and Nutrition, 4(1): 07–15. https://esciencepress.net/journals/index.php/JFCN/article/view/1532

Lyon, F.; Thevenon, M.F.; Hwang, W. J.; Imamura, Y.; Gril, J.; Pizzi, A. 2007. Effect of an oil heat treatment on the leachability and biological resistance of boric acid impregnated wood. Ann For Sci 64: 673–678. https://doi.org/10.1051/forest:2007046

Morsing, N. 1998. Densification of wood - The influence of hygrothermal treatment on compression of beech perpendicular to the grain (Series R, N 79). Department of Structural Engineering and Materials, Technical University of Denmark, Lyngby, Denmark. https://core.ac.uk/download/pdf/13738419.pdf

Navi, P.; Girardet, F. 2005. Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3): 287–293. https://doi.org/10.1515/HF.2000.048

Okon, K.E.; Lin, F.; Lin, X.; Chen, C.; Chen, Y.; Huang, B. 2018. Modification of chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment. Eur J Wood Prod 76: 221–228. https://doi.org/10.1007/s00107-017-1165-z

R Core Team. 2019. R: A language and environment for statistical computing. Version 3.6.1. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://cran.r-project.org/

Rapp, A.O. 2001.Review on heat treatments of wood. In: Proceedings of the Special Seminar COST E22, Antibes, France. https://projects.bre.co.uk/ecotan/pdf/Heat_treatment_processes_Andreas_Rapp%20.pdf

Reiterer, A.; Stanzl-Tschegg, S.E. 2001. Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mech Mater 33(12): 705–715. https://doi.org/10.1016/S0167-6636(01)00086-2

Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; et al. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554: 224–228. https://doi.org/10.1038/nature25476

Sotomayor, J.R. 2016. Efecto del densificado de la madera de Gyrocarpus americanus Jacq . en su módulo dinámico determinado por ondas de esfuerzo [Effect of the densified of Gyrocarpus americanus Jacq. wood in its dynamic modulus established by stress waves]. Ciencia Amazónica 6(2): 162–171. https://doi.org/10.22386/ca.v6i2.117

Spear, M.; Walker, J.C.F. 2006. Dimensional instability in timber. In: Primary Wood Processing, Principles and Practice, J.C.F. Walker (Ed). Springer, Dordrecht, Netherlands. pp. 95–120. https://doi.org/10.1007/1-4020-4393-7_4

Tomak, E.D.; Hughes, M.; Yildiz, U.C.; Viitanen, H. 2011. The combined effects of boron and oil heat treatment on beech and Scots pine wood properties. Part 1: Boron leaching, thermogravimetric analysis, and chemical composition. J Mater Sci 46: 598–607. https://doi.org/10.1007/s10853-010-4859-8

Wang, J.Y.; Cooper, P.A. 2005. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh Werkst 63: 417–422. https://doi.org/10.1007/s00107-005-0033-4

Wehsener, J.; Brischke, C.; Meyer-Veltrup, L.; Hartig, J.; Haller, P. 2018. Physical, mechanical and biological properties of thermo-mechanically densified and thermally modified timber using the Vacu3-process. Eur J Wood Prod 76: 809–821. https://doi.org/10.1007/s00107-017-1278-4

Welzbacher, C.R.; Wehsener, J.; Rapp, A.O.; Haller, P. 2008. Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale – Dimensional stability and durability aspects. Holz Roh Werkst 66: 39–49. https://doi.org/10.1007/s00107-007-0198-0

Downloads

Published

2021-10-07

How to Cite

Villasante, A. ., Vignote, S., Fernandez-Serrano, A. ., & Laina, R. . (2021). Simultaneous treatment with oil heat and densification on physical properties of Populus × canadensis wood. Maderas-Cienc Tecnol, 24, 1–12. https://doi.org/10.4067/s0718-221x2022000100405

Issue

Section

Article

Most read articles by the same author(s)