Mechanical, thermal, and morphological behaviour studies on coconut shell and palm kernel filler biocomposite


  • Sreeraman Narayanan
  • Sathish Gandhi Veeramalai Chinnasamy
  • Surendiran Thirugnanasambandan
  • Kumaravelan Radhakrishnan



Biocomposite material, chipboard, mechanical properties, waste shell fillers, water absorption


In the present work, the composite materials were prepared from coconut shell powder, palm kernel powder, and epoxy resin. The addition of coconut shell powder was considered when preparing the composite samples, and mechanical properties such as tensile strength, hardness, impact, bending strength, physical behavior water absorption, as well as morphological tests, were conducted using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, and Thermogravimetric Analysis for both the prepared composite material boards and chipboard.  The minimal variation of tensile stress and percentage of elongation between the 50 % coconut shell powder composite material and the wooden chipboard material is 4,44 MPa and 1,00 %, respectively, according to the findings of experimental tests.The lowest compressive stress and hardness variations between coconut shell powder composite material and wooden chipboard are found to be 0,14 MPa and 3,2 MPa, respectively. It is determined that the composite materials made from waste shell powders and epoxy resin are suitable for applications such as panel boards, automotive interior dashboards, roof sheets, and doors.


Download data is not yet available.


Arevalo-Gallegos, A.; Ahmad, Z.; Asgher, M.; Parra-Saldivar, R.; Iqbal. 2017. Lignocellulose: a sustainable material to produce value-added products with a zero-waste approach—a review. Int J Biol Macromol 99: 308-318.

ASTM. 2021. Composite test methods according to American Society for Testing and Materials Standards International Worldwide.

Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. 2020. Structure-property–function relationships of natural and engineered wood. Nat Rev Mater 5(9): 642-666.

Collins, M.N.; Nechifor, M.; Tanasă, F.; Zănoagă, M.; McLoughlin, A.; Stróżyk, M.A.; Culebras, M.; ; Teacă, C.A. 2019. Valorization of lignin in polymer and composite systems for advanced engineering applications–a review. Int J Biol Macromol 131: 828-849.

Dinesh, S.; Elanchezhian, C.; Vijayaramnath, B.; Ramadhass, R. 2018. Experimental Investigation Of Composite Materials. Int J Eng Math 7(4): 508-544.

Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. 2017. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci Total Environ 601:1192-1207.

H Silva, T.; Mesquita-Guimarães, J.; Henriques, B.; Silva, F.S.; Fredel, M.C. 2019. The potential use of oyster shell waste in new value-added by-products. Resources (1): 13.

Jiang, F.; Li, T.; Li, Y.; Zhang, Y.; Gong, A.; Dai, J.; Hitz, E.; Luo, W.; Hu, L. 2018. Wood‐based nanotechnologies toward sustainability. Adv Mater 30(1): 1703453.

Kai, D.;Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. 2016. Towards lignin-based functional materials in a sustainable world. Green Chem 18(5): 1175-1200.

Kaur, M; Mehta, A; Bhardwaj, K.K.; Gupta, R. 2020. Bionanomaterials from Agricultural Wastes. Vol. 126, in Green Nanomaterials. Advanced Structured Materials, edited by Ali, W Ahmed, S.,243-26. Springer.

Khalil, H.P.S.; Tye, Y.Y.; Saurabh, C.K.; Leh, C.P.; Lai, T.K.; Chong, E.W.N.; Fazita, M.R.; Hafiidz, J.M.; Banerjee, A.; Syakir, M.I. 2017.

Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. EXPRESS Polym. Lett 11(4): 244–265.

Koçhan, C. 2019. Mechanical properties of waste mussel shell particles reinforced epoxy composites. Mater Test 61(2): 149-154.

Kumar A; Krithiga T; Venkatesan D; Joshua Amarnath D.2021. Green Composites. Materials Horizons Composites. Materials Horizons: From Nature to Nanomaterials, edited by Balakrishnan P Thomas S. Singapore: Springer.

Kumar, R.; Kumar, K.; Bhowmik, S. 2018. Mechanical characterization and quantification of tensile, fracture, and viscoelastic characteristics of wood filler reinforced epoxy composite. Wood Sci Technol 52(3): 677-699.

Laycock, B.; Nikolić, M .; Colwell, J.M.; Gauthier, E.; Halley, P.; Bottle, S.; George, G.2017. Lifetime prediction of biodegradable polymers. Prog Polym Sci 71: 144-189.

Lebreton, L.; Andrady, A. 2019. Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5(1): 1-11.

Mariano, M.; El Kissi, N.; Dufresne, A. 2014. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J Polym Sci B Polym Phys 52 (12): 791-806.

Monteiro, P.J.; Miller, S.A.; Horvath, A. 2017. Towards sustainable concrete. Nat Mater 16 (7): 698-699.

Muraliraja, R; Tamilarasan, T.R; Udayakumar, S; Pandian, C.A. 2021. The Effect of Fillers on the Tribological Properties of Composites." In Composites Science and Technology, edited by Mohd Jamir M.R., Abdul Majid M.S., Azmi A.I., Saba N. Hameed Sultan M.T., 243-266. Singapore: Springer.

Nagarajan, K.J.; Balaji, A.N.; Basha, K.S.; Ramanujam, N.R.; Kumar, R.A. 2020. Effect of agro-waste α-cellulosic micro filler on the mechanical and thermal behavior of epoxy composites. Int J Biol Macromol 152: 327-339.

Naghmouchi, I.; Espinach, F.X.; Mutjé, P.; ;Boufi, S. 2015. "Polypropylene composites based on lignocellulosic fillers: how the filler morphology affects the composite properties. Mater Des (1980-2015) 65: 454-461.

Patil, A.Y.; Banapurmath, N.R.; Yaradoddi, J.S.; Kotturshettar, B.B.; Shettar, A.S.; Basavaraj, G.D.; Keshavamurthy, R.; Khan, T.Y.; Mathad, S.N. 2019. Experimental and simulation studies on waste vegetable peels as bio-composite fillers for light-duty applications. Arab J Sci Eng ARAB J SCI ENG 44(9): 7895-7907.

Rajinipriya, M.; Nagalakshmaiah, M.; Robert, M.; Elkoun, S. 2018. Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood-based nanocellulose: a review. ACS Sustain Chem Eng 6(3): 2807-2828.

Saba, N.; Tahir, P.M.; Jawaid, M. 2014. A review on the potentiality of nano filler/natural fiber-filled polymer hybrid composites. Polymers 6(8): 2247-2273.

Salasinska, K.; Barczewski, M.; Górny, R.; Kloziński, A. 2018. Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym Bull 75(6): 2511-2528.

Santulli, C.; Rallini, M.; Puglia, D.; Gabrielli, S.; Torre, L.; Marcantoni, E. 2020. Characterization of Licorice Root Waste for Prospective Use as Filler in more Eco-Friendly Composite Materials. Processes 8(6):733.

Wen, J.L; Wang, H.M; Ma, C.Y; Yuan, T.Q; Sun, R.C. 2021. Value-added products from lignin: IsolationValue-added products from lignin: Isolation, characterization, and applications. Biomass, Biofuels, Biochemicals (Elsevier) 33-55.

Yildirim, A; Acay, H. 2021. Applications of Biodegradable Green Composites. In Green Composites. Materials Horizons: From Nature to Nanomaterials., edited by Balakrishnan P. Thomas S:373-392. Singapore: Springer.

Zaaba, N.F.; and Ismail, H. 2019. A review on peanut shell powder reinforced polymer composites Polym-Plast. Technol Mater 58(4): 349-365.

Zhang, J.; Terrones, M.; Park, C.R.; Mukherjee, R.; Monthioux, M.; Koratkar, N.; Kim, Y.S.; Hurt, R.; Frackowiak, E.; Enoki, T.; Chen, Y. 2016. Carbon science in 2016: Status, challenges, and perspectives. Carbon 98(70): 708-732.

Shahzad, Asim. 2015 Mechanical properties of eco-friendly polymer nanocomposites." Eco-Friendly Polymer Nanocomposites. 527-559.Springer, New Delhi.




How to Cite

Narayanan, S. ., Veeramalai Chinnasamy, S. G. ., Thirugnanasambandan, S. ., & Radhakrishnan, K. . (2021). Mechanical, thermal, and morphological behaviour studies on coconut shell and palm kernel filler biocomposite. Maderas-Cienc Tecnol, 24, 1–14.