Lumber drying of pinus: Geostatistics applied to drying kilns

Authors

  • Winicius Augusto Schaeffer
  • Thiago Campos Monteiro
  • Ricardo Jorge Klitzke
  • Allan Libanio Pelissari
  • Claudio Gumane Francisco Juizo
  • Tarcila Rosa da Silva Lins

DOI:

https://doi.org/10.4067/s0718-221x2022000100425

Keywords:

Air circulation speed, moisture content, Pinus spp., spatial behavior, wood drying

Abstract

This study aimed to evaluate the spatial distribution of the air circulation speed and the final moisture content of pine lumber after kiln drying by using geostatistics. Two kilns acting on boards of 27 mm and 42 mm were evaluated. Air circulation speed and final moisture content were collected in different regions of the kilns. There was no significant difference for air circulation speed and final moisture content between the front and rear regions of the equipment. In the horizontal axis (Y-axis), air circulation speed averages did not differ statistically in both situations, but higher values ​​for this variable were obtained from the spaces between the piles. Final moisture content tended to increase when closer to the door opening. In the vertical axis (Z-axis), the lower part tended to reach higher air circulation speed values. Thus, the spatial behavior influences the air circulation speed and final moisture content during lumber drying. Besides, the variograms presented the same tendency in comparison to the data obtained in a conventional manner, which indicates that geostatistics can be used to represent variables in kilns during the drying process.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials. 2007. ASTM D4442: Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D4442-07

Ananias, R.A.; Ulloa, J.; Elustondo, D.M.; Salinas, C.; Rebolledo, P.; Fuentes, C. 2012. Energy consumption in industrial drying of radiata pine. Drying Technol 30(7): 774–779. https://doi.org/10.1080/07373937.2012.663029

Batista, D.C.; Klitzke, R.J.; Rocha, M.P.; Batista, T.R. 2016. Ensaio de taxa de secagem e escore de defeitos para a predição da qualidade da secagem convencional da madeira de Eucalyptus sp. – parte 2. Floram 23(1): 135–141. https://doi.org/10.1590/2179-8087.046613 (In Portuguese)

Bond, B.H.; Espinoza, O. 2016. A decade of improved lumber drying technology. Curr For Reports 2: 106–118. https://doi.org/10.1007/s40725-016-0034-z

Bramhall, G. 1971. The validity of Darcy’s law in the axial penetration of wood. Wood Sci Technol 5: 121–134. https://doi.org/10.1007/BF01134223

Carmo, I.E.P.; Monteiro, T.C.; Santos, G.; Lima, J.T. 2010. Geoestatística para determinação da variabilidade espacial da dureza da madeira de Hevea brasiliensis (seringueira). In Proceedings of the XII Encontro Brasileiro em Madeiras e em Estruturas de Madeira (ed). Lavras, Brasil. (In Portuguese)

Costa, L.R.R.; Dolácio, C.J.F.; Zea-Camaño, J.D.; Oliveira, R.S.; Pelissari, A.L.; Maciel, M.N.M. 2020. Variabilidad espacial de Swietenia macrophylla en sistema agroforestal de la Amazonia brasileña. Madera y Bosques 26(1): e2611937. https://doi.org/10.21829/myb.2020.2611937

Lima, J.S.S.; Silva, J.T.O.; Oliveira, R.B.; Almeida, V.S.; Vanzo, F.L. 2006. Estudo da viabilidade de métodos geoestatísticos na mensuração da variabilidade espacial da dureza da madeira de paraju (Manilkara sp). Rev Árvore 30(4): 651–657. https://doi.org/10.1590/S0100-67622006000400019 (In Portuguese)

FAO. 2020. Food and Agriculture Organization. Forestry Production and Trade. In: FAOSTAT Stat. Database. https://www.fao.org/faostat/en/#data/FO/visualize

IBÁ. 2019. Relatório 2019 Indústria Brasileira de Árvores. 80p. São Paulo, Brasil. https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf (In Portuguese)

Jankowsky, I.P.; Galvão, A.P.M. 1985. Secagem racional da madeira. 2° ed. 108p. Editora Nobel SA, São Paulo. Brasil. (In Portuguese)

Klitzke, R.J.; Monteiro, T.C.; Juizo, C.F.G.; Zen, L.R. 2019. Relatório - Avaliação da ocorrência de empenamentos em molduras de pinus. 54p. FUPEF, UFPR, Curitiba, Brasil. (In Portuguese)

Kollmann, F.F.P.; Côté Jr. W.A. 1968. Principles of wood science and technology. 1st ed., ISBN: 978-3-642-87930-2, 592p., Springer-Verlag Berlin Heidelberg: Germany. https://doi.org/10.1007/978-3-642-87928-9

Monteiro, T.C.; Lima, J.T.; Silva, J.M.; Rezende, R.N.; Klitzke, R.J. 2020. Water flow in different directions in Corymbia citriodora wood. Maderas-Cienc Tecnol 22(3): 385-394. https://dx.doi.org/10.4067/S0718-221X2020005000312

Pelissari, A.L.; Caldeira, S.F.; Ebling, Â.A.; Behling, A.; Figueiredo Filho, A. 2013. Modelagem geoestatística da dinâmica e distribuição espacial da área basal em povoamento de teca. Enciclopédia Biosf 9: 1454–1464. https://www.conhecer.org.br/enciclop/2013a/agrarias/modelagem%20geoestatistica.pdf (In Portuguese)

Pelissari, A.L.; Roveda, M.; Caldeira, S.F.; Sanquetta, C.R.; Corte, A.P.D.; Rodrigues, C.K. 2017. Geostatistical modeling of timber volume spatial variability for Tectona grandis l. f. precision forestry. Cerne 23(1): 115–122. https://doi.org/10.1590/01047760201723012291

Redman, A.L.; Bailleres, H.; Turner, I.; Perré, P. 2016. Characterisation of wood–water relationships and transverse anatomy and their relationship to drying degrade. Wood Sci Technol 50: 739–757. https://doi.org/10.1007/s00226-016-0818-0

Reitz, J.; Schluse, M.; Roßmann, J. 2019. Industry 4.0 beyond the factory: an application to forestry. In Proceedings of the Tagungsband des 4. Kongresses Montage Handhabung Industrie roboter. Springer Vieweg, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-662-59317-2_11

Schaeffer, W.A.; Zen, L.R.; Klitzke, R.J.; Monteiro, T.C. 2020. Distribuição espacial do teor de umidade de tábuas de pinus secas em estufa industrial. Adv For Sci 7(1): 855–859. https://doi.org/10.34062/afs.v7i1.9858 (In Portuguese)

Simpson, W.T. 1991. Dry kiln operator’s manual. 274p. Agriculture handbook (United States. Dept. of Agriculture), Wisconsin, United States Government Printing, Madison, United States. https://www.fpl.fs.fed.us/documnts/usda/ah188/ah188.htm

Valentim, L.B.; Tomeleri, J.O.P.; Thiersch, C.R., Thiersch, M.F.B.M.; Alesi, L.S.; Varanda, L.D.; Almeida, R.E.P.; Yamaji, F.M.; Pádua, F.A. 2019. Mapping three-dimensional moisture content of wood chip piles for energy production. Floram 26 (2): e20180432. https://doi.org/10.1590/2179-8087.043218

Vikberg, T.; Hägg, L.; Elustondo, D. 2015. Influence of fan speed on airflow distribution in a batch kiln. Wood Mater Sci Eng 10(2): 197–204. https://doi.org/10.1080/17480272.2014.995703

Wallis, N.K. 1970. Australian timber handbook. 407p. Halstead Press, Sydney, Australia. https://www.spiffa.org/uploads/2/6/7/5/2675656/australian_timber_handbook.pdf

Yamamoto, J.K.; Landim, P.M.B. 2013. Geoestatística: conceitos e aplicações. 1° ed. 215p. Oficina de textos, São Paulo. (In Portuguese)

Zadin, V.; Kasemägi, H.; Valdna, V.; Vigonski, S.; Veske, M.; Aabloo, A. 2015. Application of multiphysics and multiscale simulations to optimize industrial wood drying kilns. Appl Math Comput 267: 465–475. https://doi.org/10.1016/j.amc.2015.01.104

Downloads

Published

2022-01-31

How to Cite

Schaeffer, W. A. ., Campos Monteiro, T. ., Klitzke, R. J. ., Pelissari, A. L. ., Francisco Juizo, C. G. ., & da Silva Lins, T. R. . (2022). Lumber drying of pinus: Geostatistics applied to drying kilns. Maderas-Cienc Tecnol, 24, 1–10. https://doi.org/10.4067/s0718-221x2022000100425

Issue

Section

Article