Natural durability of five tropical wood species in field decay tests

Authors

  • Felipe Gomes Batista
  • Rafael Rodolfo De Melo
  • Dayane Targino de Medeiros
  • Pedro Jorge Goes Lopes
  • Darci Alberto Gatto

Keywords:

Decay index, hardwood, natural resistance, outdoor use, wood logs

Abstract

Measuring the natural resistance of wood is fundamental for proper use. The natural durability of five tropical wood species was investigated by field decay testing during exposure for 360 days. Wood logs (length of 0,5 m; diameter of 8 cm - 12 cm) were used in this study. The mass loss and decay index were calculated and visual analysis during the exposure time was performed for all samples. The samples presented evidence of two different groups concerning natural durability. The species in the first group (Mimosa caesalpiniifolia, Mimosa ophthalmocentra, and Mimosa tenuiflora) showed the highest resistance to biodeterioration, better or similar performance compared to treated eucalyptus wood (as control). The other group (Aspidosperma pyrifolium and Cordia oncocalyx) had lower natural resistance in outdoor service, being more susceptible to decay. In general, the wood of the first group is indicated for outdoor uses that require medium or prolonged exposure, such as timber stakes and fence posts.

Downloads

Download data is not yet available.

References

Araújo, J.B.S; Paes, J.B. 2018. Natural wood resistance of Mimosa caesalpiniifolia in field testing. FLORAM 25(2): e20150128. https://doi.org/10.1590/2179-8087.012815

Arnfield, A.J. 2020. Köppen climate classification. Encyclopedia Britannica. https://www.britannica.com/science/Koppen-climate-classification

Batista, F.G; Melo, R.R; Medeiros, D.T; Oliveira, A.G.S; Freitas, C.B.A; Silva, E.D.G; Pimenta, A.S. 2020a. Longitudinal variation of wood quality in the five forest species from Caatinga. Rev Bras Cienc Agrar 15(4): e8572. https://doi.org/10.5039/agraria.v15i4a8572

Batista, F.G; Melo, R.R; Calegari, L; Medeiros, D.T; Lopes, P.J.G. 2020b. Resistência natural da madeira de seis espécies à Nasutitermes corniger Motsch. em condição de campo. Madera y Bosques 26(2): e2622017. https://doi.org/10.21829/myb.2020.2622017

Brischke, C; Meyer-Veltrup, L. 2016. Modelling timber decay caused by brown rot fungi. Mater Struct 49(8): 3281-3291. https://doi.org/10.1617/s11527-015-0719-y

Clausen, C.A. 2010. Wood handbook: wood as an engineering material. Chapter 14: Biodeterioration of wood. Forest Products Laboratory (Ed.). FPL-GTR, Madison, USA. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf

Curling, S.F; Murphy, R.J. 2002. The use of the Decay Susceptibility Index (DSI) in the evaluation of biological durability tests of wood based board materials. Holz Roh Werkst 60: 224-226. https://doi.org/10.1007/s00107-002-0284-2

Dalla Costa, H.W; Candaten, L; Trevisan, R; Gatto, D.A. 2018. Durabilidade natural da madeira de duas espécies provenientes de floresta energética. Encicl Biosfera 15(28): 434-441. https://doi.org/10.18677/EnciBio_2018B120

Delucis, R.A; Cademartori, P.H.G; Missio, A.L; Gatto, D.A. 2016. Decay resistance of four fast-growing eucalypts wood exposed to three types of fields. Maderas-Cienc Tecnol 18(1): 33-42. https://doi.org/10.4067/S0718-221X2016005000004

Gonçalves, C.A; Lelis, R.C.C; Abreu, H.S. 2010. Caracterização físico-química da madeira de Sabiá (Mimosa caesalpiniaefolia Benth.). Rev Caatinga 23(1): 54-62. https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1348/pdf

Hassan, B; Mankowski, M.E; Kirker, G; Ahmed, S. 2017. Effects of heartwood extractives on symbiotic protozoan communities and mortality in two termite species. Int Biodeterior Biodegradation 123: 27-36. https://doi.org/10.1016/j.ibiod.2017.05.023

Instituto de Desenvolvimento Sustentável e Meio Ambiente do Rio Grande do Norte. 2008. Perfil do seu município. CES/IDEMA. Natal, Brazil. (In Portuguese)

Instituto Nacional de Meteorologia. 2020. Banco de dados meteorológicos. INMET. Brasília, Brazil. https://bdmep.inmet.gov.br/ (In Portuguese)

Karinkanta, P; Ämmälä, A; Illikainen, M; Ninnimäki, J. 2018. Fine grinding of wood – overview from wood breakage to applications. Biomass Bioenergy 113: 31-44. https://doi.org/10.1016/j.biombioe.2018.03.007

Kirker, G.T; Blodgett, A.B; Arango, R.A; Lebow, P.K; Clausen, C.A. 2013. The role of extractives in naturally durable wood species. Int Biodeterior Biodegradation 82: 53-58. https://doi.org/10.1016/j.ibiod.2013.03.007

Maia, J.H; Ferreira, L.M.M; Castro, V.G. 2020. Influence of extractives on the color of woods from Caatinga. Adv For Sci 7(2): 1043-1048. https://doi.org/10.34062/afs.v7i2.9421

Medeiros Neto, P.N; Paes, J.B; Oliveira, J.T.S; Silva, J.G.M; Coelho, J.C.F; Ribeiro, L.S. 2020. Durability of Eucalypts wood in soil bed and field decay tests. Maderas-Cienc Tecnol 22(4): 447-456. https://doi.org/10.4067/S0718-221X2020005000403

Meyer, L; Brischke, C; Melcher, E; Brandt, K; Lenz, M.T; Soetbeer, A. 2014. Durability of English oak (Quercus robur L.): comparison of decay progress and resistance under various laboratory and field conditions. Int Biodeterior Biodegradation 86(B): 79-85. https://doi.org/10.1016/j.ibiod.2013.06.025

Mounguengui, S; Saha Tchinda, J.B; Ndikontar, M.K; Dumarçay, S; Attéké, C; Perrin, D; Gelhaye, E; Gérardin, P. 2016. Total phenolic and lignin contents, phytochemical screening, antioxidant and fungal inhibition properties of the heartwood extractives of ten Congo Basin tree species. Ann For Sci 73(2): 287-296. https://doi.org/10.1007/s13595-015-0514-5

Oliveira, W.C; Pereira, B.L.C; Goes, L.S.A; Quintilhan, M.T; Oliveira, A.C; Môra, R. 2019. Deterioration of teak wood in accelerated decay test. FLORAM 26(2): e20170360. https://doi.org/10.1590/2179-8087.036017

Quintilhan, M.T; Oliveira, W.C; Oliveira, A.C; Pereira, B.L.C; Môra, R; Pinto, A.A.S. 2018. Deterioração da madeira de Eucalyptus e Corymbia em ensaio de campo. Ci Madeira 9(2): 82-94. https://doi.org/10.12953/2177-6830/rcm.v9n2p82-94

Ramage, M.H; Burridge, H; Busse-Wicher, M; Fereday, G; Reynolds, T; Shah, D.U; Wu, G; Yu, L; Fleming, P; Densley-Tingley, D; Allwood, J; Dupree, P; Linden, P.F; Scherman, O. 2017. The wood from the trees: the use of timber in construction. Renew Sust Energ Rev 68(1): 333-359. https://doi.org/10.1016/j.rser.2016.09.107

Schultz, T.P; Nicholas, D.D. 2000. Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54(1): 47-52. https://doi.org/10.1016/S0031-9422(99)00622-6

Stallbaun, P.H; Barauna, E.E.P; Paes, J.B; Ribeiro, N.C; Monteiro, T.C; Arantes, M.D.C. 2017. Resistência natural da madeira de Sclerolobium paniculatum Vogel a cupins em condições de laboratório. FLORAM 24: e20160013. https://doi.org/10.1590/2179-8087.001316

Sundararaj, R; Shanbhag, R.R; Nagaveni, H.C; Vijayalakshmi, G. 2015. Natural durability of timbers under Indian environmental conditions: an overview. Int Biodeterior Biodegradation 103: 196-214. https://doi.org/10.1016/j.ibiod.2015.04.026

Tomazeli, A.J; Silveira, A.G; Trevisan, R; Wastowski, A.D; Cardoso, G.V. 2016. Durabilidade natural de quatro espécies florestais em campo de apodrecimento. Tecno-Lógica 20(1): 20-25. https://doi.org/10.17058/tecnolog.v20i1.6473

Valette, N; Perrot, T; Sormani, R; Gelhaye, E; Morel-Rouhier, M. 2017. Antifungal activities of wood extractives. Fungal Biol Rev 31(3): 113-123. https://doi.org/10.1016/j.fbr.2017.01.002

Downloads

Published

2022-08-03

How to Cite

Gomes Batista, F. ., De Melo, R. R. ., de Medeiros, D. T. ., Goes Lopes, P. J. ., & Gatto, D. A. . (2022). Natural durability of five tropical wood species in field decay tests. Maderas-Cienc Tecnol, 24. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/5601

Issue

Section

Article

Most read articles by the same author(s)