Preliminary evaluation of the incorporation of cellulose nanofibers as reinforcement in waterborne wood coatings

Authors

  • Tawani Lorena Naide
  • Pedro Henrique Gonzalez de Cademartori
  • Silvana Nisgoski
  • Graciela Inés Bolzon de Muñiz

Keywords:

Colorimetry, microfibrillated cellulose, waterborne coating, wettability, wood finish

Abstract

The wood is exposed to possible damages caused by weather, requiring the application of a finishing coat to provide extra protection. The aim of this work was to evaluate the influence of the addition of microfibrillated cellulose in waterborne varnish on the colorimetric parameters, wettability and finish characteristics of wood products. Color was evaluated with a CM-5 spectrophotometer; surface wettability was analyzed by contact angle measurement using a drop shape analysis goniometer; and abrasion, adhesion and impact tests were performed to evaluate the quality of the coating. The coating’s optical characteristics were not affected by the addition of microfibrillated cellulose. The changes in wood wettability were small, with no statistical difference between the wood treated with plain varnish and that with unbleached microfibrillated cellulose. In the analysis of the variation of the contact angle during the elapsed time, the coating containing unbleached microfibrillated cellulose presented the best results. The results of finish quality did not show numerical changes after the addition of the microfibrillated cellulose, but qualitatively the microfibrillated cellulose caused better anchoring of the coating to the specimens. Therefore, the use of microfibrillated cellulose as reinforcement in coatings has potential, but tests with different consistencies and tests of other properties are necessary.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials. 2017. ASTM D4541-17: Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM. West Conshohocken, PA, USA. https://www.astm.org/Standards/D4541.htm

Associação Brasileira de Normas Técnicas. 2008. NRB 14535: Movéis de madeira - Requisitos e ensaio para superfície pintadas. Rio de Janeiro, BR. https://www.abntcatalogo.com.br/norma.aspx?ID=762

Barreto, C.C.K.; Pastore, T.C.M. 2009. Resistência ao intemperismo artificial de quatro madeiras tropicais: o efeito dos extrativos. Cienc Florest 19(1): 23-30: http://dx.doi.org/10.5902/19805098416

Duan, H.; Shao, Z.; Zhao, M.; Zhou, Z. 2016. Preparation and properties of environmental-friendly coatings based on carboxymethyl cellulose nitrate ester & modified alkyd. Carbohydr Polym 137: 92-99: https://doi.org/10.1016/j.carbpol.2015.10.067

Dufresne, A. 2013. Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6): 220-227: https://doi.org/10.1016/j.mattod.2013.06.004

Ferreira, D.F. 2008. SISVAR: um programa para análises e ensino de estatística. Revista Symposium 6: 36-41: http://www.dex.ufla.br/~danielff/meusarquivospdf/art63.pdf

Ferreira, L.M.V. 2013. Revestimentos hidrofóbicos. Thesis (Master's degree), Universidade Nova de Lisboa, Lisboa, Portugal. http://hdl.handle.net/10362/11045

Ferreira, M.D.; Spricigo, P.C. 2017. Colorimetria - Princípios e aplicações na agricultura. In Instrumentação pós-colheita em frutas e hortaliças.

Ferreira, M.D. (Technical Ed.). São Carlos: Embrapa Instrumentação, Brazil. 209-220pp. https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=1084379&biblioteca=vazio&busca=autoria:%22SPRICIGO,%20P.%20C.%22&qFacets=autoria:%22SPRICIGO,%20P.%20C.%22&sort=&paginacao=t&paginaAtual=1

Fonte, A.P.N. da. 2016. Utilização da madeira de Cryptomeria japonica para a produção de painéis colados lateralmente e aplicação de acabamento superficial. Thesis (Master's degree), Universidade Federal do Paraná, Curitiba, PR, Brazil. https://acervodigital.ufpr.br/bitstream/handle/1884/46063/R%20-%20D%20-%20ANA%20PAULA%20NAMIKATA%20DA%20FONTE.pdf?sequence=1&isAllowed=y

Garcia, R.A.; Oliveira, N.S. de.; Nascimento, A.M. do.; Souza, N.D. de. 2014. Colorimetria de madeiras dos gêneros Eucalyptus e Corymbia e sua correlação com a densidade. Cerne 20(4): 509 – 517: https://doi.org/10.1590/01047760201420041316

Gezici-Koç, Ö.; Erich, S.J.F.; Huinink, H.P.; Van Der Ven, L.G.J.; Adan, O.C.G. 2018. Understanding the influence of wood as a substrate on the permeability of coatings by NMR imaging and wet-cup. Prog Org Coat 114: 135-144: http://dx.doi.org/10.1016/j.porgcoat.2017.10.013

Gibbons, M.J.; Nikafshar, S.; Saravi, T.; Ohno, K.; Chandra, S.; Nejad, M. 2020. Analysis of a wide range of commercial exterior wood coatings. Coatings 10: 1013. https://doi.org/10.3390/coatings10111013

Hikita,Y.; Toyoda, T.; Azuma, M. 2001. Weathering testing of timber: discoloration. In High performance utilization of wood for outdooor uses. Imamura, Y. (Ed.) Kyoto: Press-Net, Japan, 27-32pp.

Islam, M.T.; Alam, M.M.; Zoccola, M. 2013. Review on modification of nanocellulose for application in composites. Int J Innov Res Technol Sci Eng 2(10): 5444–5451. http://www.ijirset.com/upload/october/43_REVIEW.pdf

Kluge, M.; Veigel, S.; Pinkl, S.; Henniges, U.; Zollfrank, C.; Rossler, A.; Gindl-Altmutter, W. 2017. Nanocellulosic fillers for waterborne wood coatings: reinforcement effect on free-standing coating films. Wood Sci Technol 51(3): 601-613: https://doi.org/10.1007/s00226-017-0892-y

Lengowski, E.C.; Muñiz, G.I.B.; Andrade, A.S.; Simon, L.C.; Nisgoski, S. 2018. Morphological, physical and thermal characterization of microfibrillated cellulose. Rev Árvore 42(1): e420113: http://dx.doi.org/10.1590/1806-90882018000100013

Martins, G.B.C.; Sucupira, R.R.; Suarez, P.A.Z. 2015. Chemistry and Colors. Rev Virtual Quim 7(4): 1508-1534: http://dx.doi.org/10.5935/1984-6835.20150082

Poaty, B.; Vahe, V.; Wilczak, L.; Chauve, G.; Riedl, B. 2014. Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77(4): 813-820: http://dx.doi.org/10.1016/j.porgcoat.2014.01.009

Potulski, D.C.; Viana, L.C.; Muniz, G.I.B. de.; Andrade, A.S. de.; Klock, U. 2016. Caracterização de nanofilmes de celulose nanofibrilada obtida em diferentes consistências. Sci For 44(110): 361-372: http://dx.doi.org/10.18671/scifor.v44n110.09

Schrader, M.E. 1995. Young-Dupre Revisited. Langmuir 11(9): 3585-3589: https://doi.org/10.1021/la00009a049

Segal, L.; Creely, J.J.; Martin, A.E.; Conrad C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786-94: http://dx.doi.org/10.1177/004051755902901003

Silva, E.L.; Vieira, H.C.; Santos, J.X.; Nisgoski, S.; Saul, C.K.; Muñiz, G.I.B. 2019. Nanofibrillated cellulose, the small promising fiber: characteristics and potentialities. Floresta 49(3): 411 - 420: http://dx.doi.org/10.5380/rf.v49i3.58864

Tan, Y.; Liu, Y.; Chen, W.; Liu, Y.; Wang, Q.; Li, J.; Yu, H. 2016. Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain Chem Eng 4(7): 3766-3772: https://doi.org/10.1021/acssuschemeng.6b00415

Vardanyan, V.; Galstian, T.; Riedl, B. 2014. Effect of addition of cellulose nanocrystals to wood coatings on color changes and surface roughness due to accelerated weathering. J Coat Technol Res 12(2): 247-258: https://doi.org/10.1007/s11998-014-9634-3

Veigel, S.; Grüll, G.; Pinkl, S.; Obersriebnig, M.; Müller, U.; Gindl-Altmutter, W. 2014. Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres. React Funct Polym 85: 214-220: http://dx.doi.org/10.1016/j.reactfunctpolym.2014.07.020

Viana, L.C.; Muñiz, G.I.B.; Magalhães, W.L.E.; Andrade, A.S.; Nisgoski, S.; Potulski, D.C. 2019. Nanostructured Films Produced from the Bleached Pinus sp. Kraft Pulp. FLORAM 26(4): e20150191: http://dx.doi.org/10.1590/2179-8087.019115

Yona, A.M.C.; Žigon, J.; Matjaž, P.; Petrič, M. 2021. Potentials of silicate‑based formulations for wood protection and improvement of mechanical properties: A review. Wood Sci Technol 55: 887–918: https://doi.org/10.1007/s00226-021-01290-w

Žigon, J. 2021. Interactions of a waterborne coating with plasma pre‑treated densified beech wood. Eur J Wood Prod 79: 1383–1394: https://doi.org/10.1007/s00107-021-01716-z

Downloads

Published

2022-08-23

How to Cite

Naide, T. L. ., Gonzalez de Cademartori, P. H. ., Nisgoski, S. ., & Bolzon de Muñiz, G. I. . (2022). Preliminary evaluation of the incorporation of cellulose nanofibers as reinforcement in waterborne wood coatings. Maderas-Cienc Tecnol, 24. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/5617

Issue

Section

Article

Most read articles by the same author(s)