PRODUCTION PLANNING MULTI-PRODUCT AND MULTI-MACHINE PROBLEMS IN ORDER TO MAXIMIZE THE ECONOMIC PERFOMANCE

Resumen

Este artigo propõe um novo método que visa à maximização do resultado econômico operacional, através do planejamento de produção. O modelo utiliza um algoritmo de otimização que envolve quatro áreas de análise: mercado, produção, custos e por fim o resultado econômico. O objetivo é a maximização do lucro. A aplicação do modelo ocorre em uma empresa de manufatura que tem se caracterizado por alta variabilidade na definição dos preços de venda. Os resultados deste estudo indicam que pequenas variações nos preços de venda podem comprometer substancialmente os lucros globais do sistema produtivo.

Citas

ALMEIDA, A. N.; SILVA, J. C. G. L.; ÂNGELO, H and NUÑEZ, B. E. C. Analysis of factors that influence the log price for mechanical process in the state of Paraná, 2010, Cerne, Lavras, 16 (2), 243-250.

ANTUNES, J.; ALVAREZ, R.; BORTOLOTTO, P.; KLIPPEL, M and PELLEGRIN, I. Sistemas de Produção: Conceitos e Práticas para Projetos para Gestão da Produção Enxuta. Porto Alegre: Bookman, 2008. ISBN 9788577802494.

BILLER, S.; MURIEL, A and ZHANG, Y. Impact of price postponement on capacity and flexibility investment decisions. Production and Operations Management, 2006, 15 (2), 198- 214
.
BOSE, S and PEKNY, J.F.A. Model predictive framework for planning and scheduling problems: a case study of consumer goods supply chain. Computers and Chemical Engineering, 2000, 24, 329-335.

BOTELHO, D. Decomposição da elasticidade-preço no varejo com uso de dados escaneados. Pesquisa Operacional, 2005, 25 (2), 201-221.

CHOD, J and RUDI, N. Strategic investments, trading, and pricing under forecast updating.
Management Science, 2006, 52 (12), 1913-1929.

DANESE, P and KALCHSCHMIDT, M. The role of the forecasting process in improving forecast accuracy and operational performance. International Journal of Production Economics, 2011, 131 (1), 204-214.

ERDIRIK-DOGAN, M and GROSSMANN, I.E. Simultaneous planning and scheduling of single-stage multi-product continuous plants with parallel lines. Computers and Chemical Engineering, 2008, 32, 2664-2683.

FISCHER, M and RAMAN, A. Reducing the cost of demand uncertainty through accurate response to early sales. Operations Research, 1996, 44, 87-99.

HSIEH, C.; LIU, Y and WANG, W. Coordinating ordering and pricing decisions in a two-stage distribution system with price-sensitive demand through short-term discounting. European Journal of Operational Research, 2010, 207, 142-151.

JANS, R.; DEGRAEVE, Z and SCHEPENS, L. Analysis of an industrial component commonality problem. European Journal of Operational Research, 2008, 186, 801-811.

JI, Q.; WANG, Y. and HU, X. Optimal production planning for assembly systems with uncertain capacities and random demand. European Journal of Operational Research, 2016, 253, 383- 391.

KANNEGIESSER, M.; GÜNTHER, H. O.; BEEK, P. V.; GRUNOW, M. and HABLA, C. Value chain management for commodities : a case study from the chemical industry. Supply Chain Planning, 2009, 1-31.

KAPLAN, U.; TURKAY, M.; KARASOZEN, B and BIEGLER, L. T. Optimization of supply chain systems with price elasticity of demand. INFORMS Journal on Computing, 2010, 23(4),1-12.
KASSEL, S and TITTMANN, C. Implications from customer behavior for manufacturing. Journal of Intelligent Manufacturing, 2007, 18 (4), 475-478.

KIM, D and LEE, W. J. Optimal joint pricing and lot sizing with fixed and variable capacity. European Journal of Operational Research, 1998, 109, 212-227.

LANNING, S.; MITRA, D.; WANG, Q and WRIGHT, M. Optimal planning for optical transport networks. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2000, 358 (1773), 2183-2196.

LEUNG, K. F. A generalized geometric-programming solution to “An economic production quantity model with flexibility and reliability considerations”. European Journal of Operational Research, 2007, 176, 240-251.

LEVIS, A. A and PAPAGEORGIOU, L. G. Active demand management for substitute products through price optimization. OR Spectrum, 2007, 29, 551-577.

LINGITZ, L.; MORATEWETZ, C.; GIGLOO, D. T.; MINNER, S and SIHN, W. Modelling of flexibility costs in a decision support system for midterm capacity planning. Procedia CIRP 7, 46th CIRP Conference on Manufacturing Systems, 2013, 539-544.

LIU, S.; SHAH, N and PAPAGEORGIOU, L. G. Multiechelon Supply Chain Planning with Sequence-Dependent Changeovers and Price Elasticity of Demand under Uncertainty. Wiley Online Library, 2012, 58 (11), 3390-3403.

MARTÍNEZ-COSTA, C.; MAS-MACHUCA, M.; BENEDITO, E and COROMINAS, A. A review of mathematical programming models for strategic capacity planning in manufacturing. Int. J. Production Economics, 2014, 153, 66-85.

MORATEWETZ, C and SIHN, W. Model of a Decision Support System for a Least-Cost and Harmonized Capacity Adjustment in the Short- and Medium-Term Planning Horizon. Procedia CIRP 3, 45th CIRP Conference on Manufacturing Systems, 2012, 20-25.

PAPAGEORGIOU, L.G. Supply chain optimization for the process industries: Advances and opportunities. Computers and Chemical Engineering, 2009, 33, 1931-1938.

PEREA-LO, E.; YDSTIE, B. E and GROSSMANN, I. E. A model predictive control strategy for supply chain optimization. Computers and Chemical Engineering, 2003, 27, 1201-1218.

SADJADI, S. J.; YAZDIAN, S. A and SHAHANAGHI, K. Optimal pricing, lot-sizing and marketing planning in a capacitated and imperfect production system. Computers and Industrial Engineering, 2012, 62, 349-358.

SEN, W.; POKHAREL, S and YULEI, W. Supply chain positioning strategy integration, evaluation, simulation, and optimization. Computers and Industrial Engineering, 2004, 46, 781-792.

SHAPIRO, J. F.; Challenges of strategic supply chain planning and modeling. Computers and Chemical Engineering, 2004, 28, 855-861.

SILVA, E. L and MENEZES, E. M. Metodologia da pesquisa e elaboração de dissertação. Florianópolis: Laboratório de Ensino à Distância da UFSC, 3 ed. 2001.

SUBRAMANIAN, K.; RAWLINGS, J. B.; MARAVELIAS, C. T and FLORES-CERRILLO, J.; MEGAN, L. Integration of control theory and scheduling methods for supply chain Management. Computers and Chemical Engineering, 2013, 51, 4-20.

TAN, T and ALP, O. An integrated approach to inventory and flexible capacity management subject to fixed costs and non-stationary stochastic demand. OR Spectrum, 2009, 31, 337- 360.

TELLIS, G. J. The price elasticity of selective demand: A meta-analysis of econometric models of sales. Journal of Marketing Research, 1988, 25, 331-341.

VISWANATHAN, S and WANG Q. Discount pricing decisions in distribution channels with price-sensitive demand. European Journal of Operational Research, 2003, 149, 571-587.

ZHANG, B.; HU, S.; SONG, J and CHENG, S. Analysis about Medium-long-term Demands Forecasting and Capacity Decision Based on the Grey GM(1,1) Improved Models. International Conference on Management Science & Engineering, 2012, 19, 20-22.
Publicado
2017-04-30
Cómo citar
ROMANZINI, Fernanda; DUARTE, José Luis; PESSOTTO ALMEIDA, Rodrigo. PRODUCTION PLANNING MULTI-PRODUCT AND MULTI-MACHINE PROBLEMS IN ORDER TO MAXIMIZE THE ECONOMIC PERFOMANCE. Revista Ingeniería Industrial, [S.l.], v. 16, n. 1, apr. 2017. ISSN 0718-8307. Disponible en: <http://revistas.ubiobio.cl/index.php/RI/article/view/3067>. Fecha de acceso: 16 jan. 2018
Sección
Artículos