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ABSTRACT

Among the construction materials, wood reveas an orthotropic pattern because of unique
characterigticsin itsinternal structurewith three axes of wood biological directions (longitudinal,
tangential and radial). The effect of grain orientation on the eastic modulus constitutes the
fundamental causefor wood anisotropy. It is responsiblefor the greatest changesin the vaues of
the constitutive tensor components, and, thusin the elastic constant values of wood. The god of
thisarticleis to verify the adequacy of the orthotropic model for wood, basically expressed by the
modulus of easticity E.related to a determined direction. Coordinate transformation between
the materidsaxes (L, Rand T') and Euler's anglesis considered to use a constitutive equation for
orthotropic materials. The main purpose of thisanaysisisto theoretically explore the coordinate
transformation in the three - dimensional point of view and dso to statistically compare the
results of modulus of elasticity from compression test in a Brazilian wood species, Guapuruvii
(Schizolobium parabyba), with values obtained from atheoretical expression. Theresultsfrom the
andyds, in which the coefficient of determination (R-sg) was equal to 0.965 for a linear least

squares analysis, showed that the orthotropic model is adequate to be applied.
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RESUMEN

La madera, entre los materiales de construccidén, presenta un comportamiento ortotrépico, esto
debido asu estructurainterna con tres ges eldsticos de simetria: longitudinal, tangencial y radial.
Hl efectodelaorientacién angular delasfibrasen d médulo edstico constituyela causafundamental
delaanisotropiaen lamadera. Esteefecto es responsable por los grandescambios en los vaoresde
los componentes del tensor constitutivo, y, consecuentemente en los valores de las constantes
eddticasde lamadera. El objeto de este articul o es verificar laadecuacién del modelo ortotrépico
para la madera, expresado bdsicamente por € médulo de elasticidad E referido a una direccién
determinada. Se consider6 una transformacién de coordenadas entre los gesdel materia (L Ry
T) y los 4ngulos de Euler para utilizar una ecuacién constitutiva para materiales ortotrépicos. B
propdsito principal de este andlisis es explorar teéricamente la transformacién de coordenadas,
desde d punto de vista tridimensiona y también, comparar estadisticamente los resultados del
médulo de elasticidad obtenido a través.del ensayo de compresién en la madera brasilefia de la
especie, Guapuruvi, con los vaoresobtenidos por medio de unaexpresién teérica. Los resultados
deesteandliss, en d qued coeficientede determinacién (R-sg) fueigual a0.965 en un andlisisde

minimos cuadrados lineal, mostré que d modelo ortotrépico es vdlido para ser aplicado.
Palabras Claves. Médulo de Elasticidad de la Madera, Ensayo de Compresién, Material
Ortrotépico.
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INTRODUCTION

The most general elastic constitutive model formulated to describe the mechanical behavior of
material is the anisotropic model. Thiskind of model impliesthat there is no material symmetry,
and mechanical propertiesin each direction are different. On the other hand, if there is material
symmetry, the material can be denominated, for example, orthotropic or isotropic. I n thiscontext,
the adequacy of a determined material for a certain elastic model is based on the existence of
elastic symmetry axes. | n these axes, denominated elastic principal axes, thereisinvariance of the
congtitutive relations under agroup of transformations of coordinate axes.

In fact, the study of anisotropy is to develop the constitutive law that governs the eastic
behavior of the material and, consequently, to determine the constitutive tensor, 5, and its
components. In acompletely el asticand ani sotropic model thistensor has81 unknown coefficients.
By using adequate simplifications, this number can be reduced to 9 coefficients, which is
denominated orthotropic model, or to 2 independent constants, which is the isotropic model.

Among the construction materials, wood follows an orthotropic pattern due to its unique
internal structurealong the three axes of wood biological directions (longitudinal, tangential and
radial). Thus, there are 9 coefficients to be determined.

Because of the nature of wood, there are some parametersthat can interfere with theseelastic
constantsand such parametersinclude moisture content, specificgravity and thegrain orientation.

On the other hand, focusing on the wood anisotropy, the variation of grain angle constitutes
its fundamental cause. It is responsiblefor the greatest changes in the values of the constitutive
tensor components, and, consequently in the wood elastic constants.

Many procedures have been used to analyze thewood behavior under a uniaxial direction and,
determined the elastic constants of wood using uniaxial compression (or tensile) tests as well.
Conversely, wood under athree-dimensional field view islessstudied and consequently the constants
of wood and their relationship are not fully quantified.

In thisway, the aim of this paper isto verify the adequacy of the orthotropic model for wood,
analyzing the results of compression tests in Brazilian wood species, Guapuruvi (Schizolobium
parabyba) and then comparing them with the theoretical valuesobtained from aspecific expression.
In order to carry out thisanayss, it is necessary to transform the angles measured on the surface
of the specimen to Euler's angles and to apply the correct coordinate transformation tensor.
Thus, this study addresses an investigation, on the basis of both theoretical and experimental
aspects, in which it focuses on a three-dimensional coordinate transformation, which is usually
lessinvestigated in this area.

MATERIALSAND METHODS

Elastic Properties Of Anisotropic Materials
According to Love (1944) and Chen and Saeeb (1982), among others, the laws and equations
that govern engineering problems are related to the stored energy in asolid. So, an elasticsolid is
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capable of storing the energy developed by the external work and transforms it into potential
elastic energy that is denoted as strain energy. During this process, the body is deformed, but
recoversits original shape and sze once the external forceis removed.

I n thiscondition, if no energy isdissipated during the processof deformation, under adiabatic
and isothermal conditions, the derived equationsfrom thissupposition are termed elastic models
of Green and the material that makes the body as hyperelastic material. Thus, a hyperelastic
material is the one that has astrain energy function, denoted by U.

Thedasticmaterial of Green is, infact, aspecial case of the most general elastic material caled
elastic material of Cauchy, but considering the existenceof the U , in order to maintain unaltered
the laws of thermodynamics. These laws say that an elastic material produces no work in aclosed
loading cycle. Using the strain energy function and considering the Green elastic model,
formulations of the constitutive laws for different classes of eastic materials can be established.
S0, consider astrain energy function given by:

where C,, 0., B, a, are constants and ¢, is the strain tensor. In view of the strain energy
formulation where the strain energy has a stationary value in relation to the strain tensor, it is

U,
possible to set C, = 0. From equation (1) and considering that: “7 =%, > the stresses can be
expressed by:

0y =0+ ( By + Braij )€ (2)
For an elastic body, the current state of stress depends only on the current state of strain. |t may
aso be taken into the account the fact that a.. =0, sincethat theinitial strain field correspondsto

an initial stressfreestate, and (f,,, + 8,,) can betakenas C., , so, mathematically, the constitutive
laws can be written as: ‘ | |

O = Ciini€r (3)

in which: o, is the stress tensor, g, IS the strain tensor, CW is the tensor of material eastic
constants.
Agreeingthat | C, | = O, the equation (3)can be expressed as:

€ii = SOk -3 (4)

where: S{.j.},{, Is the compliance tensor.
T he constitutive laws may also be written in matrix form as

vi=lck] (5)
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Similarly for §_ , we obtain:
i

er-lsk s ©)

On theother hand, according to Lekhnitskii (1981), all bodies, on thewhole, can be divided into
homogeneous and non-homogeneous bodies, and isotropic and anisotropic as well.

When abody isconsidered to be homogeneous, its physical properties, such asdengty-, remain
invariant in dl directions, in any of its points. For non-homogeneous body its properties are not
constants.

If the elastic properties of the material are the same in certain directions, then the material
exhibits symmetry with respect to these directions. If symmetry exists, the material is generally
said to beisotropic. Otherwiseg, if thereisno symmetry at all, the material issaid to be anisotropic.

Another interesting issue to be pointed out is that when a body presents certain kinds of
symmetry, the constitutive relations are ssmplified. These simplificationscan be donein different
ways just as those used by Love (1944), where the strain energy function remains unaltered by all
symmetrical coordinate system substitutions. Thus, for example, a corresponding substitution
given by three axes of elasticsymmetry, ", =-%:() =-x;Y =Y;2 =-z) does not change the valueof U..
Lekhnitskii (1981), on theother hand, performsthesesimplificationsby in two different coordinate
systems, symmetrical one to other. The author compared the obtained constitutive relationsand
Identified the existence of the elastic symmetry.

A material with elastic symmetry under. the linear transformation X’,-=|,-ija with IU being the
coordinate transformation tensor, requiresthat the constitutive tensor, either QW or S}W, comply
with the following condition:

C:'.s‘pq = | rl'l sj | pk | ql Cijkl (7)

In this context, there are four cases of elastic symmetry, which are considered most important.
They are: one plane of eastic symmetry, three planes of elastic symmetry (orthotropic material),
transversaly isotropy material and isotropic material. Sincethe purpose of this paper isto consider

wood as an orthotropic body, we only analyzed this kind of elastic symmetry.

Thus, a body referred to a coordinate system y is defined as orthotropic material if through
each point there are three mutually perpendicular axes of elastic symmetry. Then, using the
coordinate system ,,, %, and , (or %, y, and Z), perpendicular to the three planes of material
symmetry and considering the elastic properties to be invariant under counterclockwise rotation
180" of about three axes, and using one at time as showed in Figure 1, it is possibleto determine
the constitutive tensor for orthotropic materias.
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Figure 1-180° - Rotation about ..

Conseguently, we obtain that:

L Lt 10 0 ]
I,-J-=0 =T . - (8)
0 0 -1

And we find, either C,, oS, canbewtitten by:

(S1i11 S22 Suzz 0
S Sz Spz;z 0
Ss311 S3320 Sz 0

DS S
DS

Baca=
s o 0 g s oy

Now, using the engineering notation for elastic constants, we have that:

T Va . Vi 0 0 0
EI EZ E3
s BB jodly. 0 J¥o0 0 0 0
EI EZ E3
_V1§ _V23 i 0 0 0
e & E}’ EZ E3
i L seirlgws, (10)
GL?
: 1
Sim. = a 0
Gs
1
Gy
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where: E.is the modulus of elasticity related to i direction, Gy..is the shear modulus related to z -
plane and v, IS the Poisson's ratio in 77 - plane.

In thisway, arbitrating for wood the orthotropic model, with the three elastic principal axes
denoted L, R and T, which can be seen in Figure 2, the components of the any tensor are
determined by replacing theindices 7,2 and 3 by L, Tand R.

o~ A
RS
SR

i
_fNarrow Ti
A b

Figure 2- Material Axes and Board Axes for wood.

The effect of Grain Angle
In general, as already pointed out the variation of grain angle causes greatest changes in the
constitutive tensor components, and, obviously in the wood el astic constant values.

Many researchers, in the theoretical and experimental point of view have long studied the
effect of grain angle. Oneof the most important procedureswas formulated by Hearmon (1948),
who reported the effect of grain angleson al the components of 5;,-;, » showing that for wood it is
possible to obtain negative vaues of Poisson's ratio, which emphasized the wood anisotropy.

Goodman and Bodig (1970), presented the following coordinate transformation matrix in
order to determine the wood €elastic properties with respect to rotation 6 about the L axisand ¢
about R - axis

x;) [cos¢ -—singcosO singcosO](L
Xpb=| 0 cost snf |IR (11)
X3 - sing - cos¢gsin@ cos¢cosO ||T

The material axesand the board axesare: R, 7and L, x, (, ¥, 2), respectively. Figure 3 showsthese
axes.
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Figure 3- Goodman and Bodig's coordinate transformation for wood.

Equation (11) can be generalized for two coordinate transformations that can bewritten by:

' 211
X = | im¥m = I ikl kmXm

(12)

I n termsof tensor notation, |’.I.represent theset of direction cosnesand | and 2 are, respectivdly,
the first and the second rotations. Since no rotation about T was considered, this coordinate
transformation is limited to cassswhere the L material axisliesin thex,- x, plane.

Bindzi and Samson (1995) derived another coordinate transformation relation with rotation
¢ about L-axis and 1 about R-axis as follows:

(x] [cos¢
Jyl=1{sing
z 0

— sing cos@
COS P COSY
sny

singsiny -
—cosgsiny |

CosY

(R

T

L

’ (13)

It can be noticed that the R-axisliesin the -y plane. Thisequation can begot using Equation

(12).

Both this and Goodman and Bodig's transformations are considered limited sinceit is not
possible to obtain al relations between the board and material axes.,

Hermanson (1996), studying the transformation of eastic properties for lumber to align these

axesy, (% 1> 2) with the material axesy’; (L, & 7), used threerotations A, p and ¢ (denoted Euler
‘s angles) about %, ¥ and Z axes, as can be seen in Figure 4.
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Thus, we can write that:

' 312 11
X =1 yl jkl kmXm (14)
or in terms of matrix, that:
x' = Ax (15)

with A being a product of three matrices as defined as follows:

¢6sA sinA 0] [I O 0 cosp sing O
=l=8tnr cosr 0| |0 cosp 0 1 [cos¢p sing 0 (16)

0 0 1| |0 -smp sinp| |-sing cos¢ 0

cos p 0 0 1

Observe that Equation (14) is similar to Equation (12}, where the superscript 3 representsthe
third rotation.

X', X
yll
-B%h
\
Z\"\_%p‘z'

Figure4 - Euler’s anglesA, p and .

Thefina relation among these systemsleads to:

(R) (X
ITt_[4] {»t (17)
LLJ LZ,
tError!Marcador no definido.
OR
(R Uox  Ypy  rz %]

= ) 18
iTi=la, a @, i)} (18)

L a a a Z

AT e i 0 S

where A isdetermined by:

' cos Acos - Sinhcospsing  cos Asing * sinAcos pcos¢  Sinhinp?
A=|=-9n$cosp - cosAcos pIng - sinAsing +cos Acos pcos coshinp (19)
snpsing - sinpcos¢ cos P
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After that, the three Euler's angles were related to the surface angles &, 3 and vy, through the
following relations:

nacosB
9 = arctg(ﬁlcosasgzﬁ—]
e amg/ S|n|? ]; (20)
\COS(XSln¢
5 — arctg/ Siny cos ¢ — cosysing
 cos p(cosy cos¢ t Sinysing

These angles can be seen in Figure5;

Figure 5- Surfaceanglesa , 3 andy.
In thisway, it was possibleto find the Euler'sangles by knowing the surfaceanglesand eva uating

all wood dastic constants by using the compl ete coordinate transformation to elast|c propertl €s,
described by Equation (7) or using Equation (21) given by:

!
Srqu | ril sjl pkl qlSijkl (21)
o in terms of matrices by:

S'=K"-S-K (22)

where: | . Kand /KJ7 , the transpose of X, are function of components of the matrix A. The
matrix Kis the following matrix:

(23)

e ey

K; K,
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n V1 (24)
2 12 42
K; =5 15 1%

-

|5 [&sS
31 132 133
Il Tl Tl
Ky =|1plas Tosla 1ol

laalss Laslsr Lail 52

1ol sr Tagl sy 13l 337
Ky =\{lzly Tln Tils)

_|3z|33 | 33l 3 |31|23_
ool 33+ 103l 50 Doslsp+ o753 1oz +1 55l 557
Ky={lplg+lsglp Tslg+lsds Tl p+lsly

_' o+l Vyslo+lpl 5 |11|22+|12|21_

Now, from Equation (21), we can determine, for example, S,,,, , S,,,,, S,,,, or, smply, the
board elastic moduli [see Equation (10)], by:

& 4 323 { 523 2.2 T T2
I _ ki, 0~ 20R05ViR | 0L~ 20R0LVIR ~ 20501V iy | U5i0Li | OLi%Ri , ORiOTi (25)

E; Ep Ep E; Grp G Ggyp

where: i= x, 3 = .

It is noted that the terms. @ R; @7, @ 1; are obtained from Equations (18) and (19).

Experimental Methods

The experimental data used to analyze the adequacy of thewood elastic behavior for orthotropic
elasticmodel wereobtained in Lamem- Sao Carlos-Brazil, following the procedure used by Mascia
(1993). T he specimens which were used consisted of wood blocks of 6 cm x 6 cm x 18cm of
Guapuruvi (Schizolobium parahyba) Species obtained from tree stem, according to the following
schematic. The moisture content was around 12% at ambient temperature ( 25" C) and the
specific gravity around 0.40 g/cm?.
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Figure 6- Scheme of the specimens used in compression test

Thegod of this procedureisto determinethe modulus of elasticityinsomegrain orientations
determined with respect to the R-T, the R-L and T-L plane.

To achieve this, firstly, lumbers were cut in such away 0 that one axe direction in the R-T
plane varying in the following angles: 0°,20°,45°,70° and 90° and the length axe being parallel to
theL direction. After this, blockswereobtained from theselumbersfollowingthesamedirection
but varying the angles over the lumber axein the R-T planeby 0°, 3°,5°,7° and 10" . In thisway,
25 specimens were obtained for the compression tests. We have to emphasize that this procedure
was very carefully designed and needs great care to accomplish.

It was used the AMSLER test machinewith 250 kN load capacity and strain gages to measure
the strains.

REULTSAND DISCUSS ONS

In thiswork, only the modulusof elasticityin z-axiswasinvestigated by comparingthe experimental
data, denominated E,,, with and the theoretical predictionsfrom Equation (25), Ege,- TO Use
Equation (25), it is necessary to know the following elastic constants:

Ep,Ev,E;,Gpp,Grr Grp,VRr sVIRsVLT

These parameters were determined from the compression test data [Mascia (1993)], whose
vauesare:

Eg =519,E; =287,E; =3507,Gpy =421,G g =73,G p = 378,




Universidad del Bio-Bio

The above vaues have the unit of MPa. The vaues of Poisson's ratios are given as follows
[Mascia (1993)]:

VRT =0.83,VLR =0.56,‘VLT =0.69

Modulus Of Elasticity: Experimental And Theoretical Data Comparison

In the range covered by the 25 sets of data, it was considered to establish relations between
theoretical and experimental values, through the statistical regresson anayss.

This analyss providesthe following regression:

E .o =248 + 0.896 FE exp (26)
with : R-sq=96.5% (Coefficientof Determination) andwhere £, isthe modulusof elasticity in
z-axis, & , caculated from Equation (25) and E&vp Is obtained from the experimental data.

Detailed data both for the theoretical cal culations and experimental measurements are given
inTable 1 whereasTable 2 shows the Andysisof Variance. The analysiswas based on the methods
of Montgomery and Peck (1992) and Ryan (1994), and Minitab software.

Tablel
Tablel Modulus of Elasticity £; (MPa)
Specimen  Zeyp (MPa) Eieo Specimen  Eeyp Eteo
0-0-0 3500 3495 45 -70 311 494
0-20 1884 2102 45 -90 250 519
0-—45 876 694 70 0-7 3391 3245
0 -70 413 341 70 - 20 1500 1963
0-90 519 519 70 45 656 858
20-0-3 3666 3442 70 —70 379 561
20 -20 1489 2045 70 -90 211 519
20 —45 489 674 90 —-0-10 3500 3112
20 -70 379 363 90 — 20 1400 1900
20 -90 338 519 90 — 45 677 864
45 -0 -5 3700 3353 90 —70 486 572
45 - 20 1692 1987 90 -90 287 519

45 - 45 588 746
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Table 2
Table 2- Analysisof theVariance for Significance of Regression
Source of ' Sum of Degrees Mean Fo P(%)
- Variation ' Squares of Square Probability
Freedom
Regression 29810815 1 | 2981081 663.61 0.0001
Residual 1033210 23 44922
Total 30844025 24

From thisanalyss of the variancewe can conclude that the regresson between the theoretica
vaues and the experimental data is significant. This means that we can rgect the null hypothesis
with a high level of significance. We can observe that if the observed vaue of F, is large, the
parameter E_ is non- zerofor areached probabilityp . In other words, the agreement among the
theoretical vﬁues of the éastic modulus and the experimental vaues described by Equation (26)
Is satisfactory.

Figure 7 shows the regression plot, in which, by analyzing the prediction interval, with 0.95
confidence coefficient, we can observe that some resultsin the 25-data set did not adequately fit
in the confidential interval of the linear model but all of them fitted adequately in the predicted
interval. Thisstatistically reflects the capacity of predicting of this model.

Regression Plot

Etheo= 248.205 + 0.896255Eexp
R-Sq =96.7 %

4000 —

3000 —

2000 —

1000 —

Regression
----------- 95% Cl
- 95% PI

Theoretical Elastic Modulus (MPa)

|

| 1 [ | 1
0 1000 2000 3000 4000

Experimental Elastic Modulus (MPa)

Figure 7- Regression Plot Of Experimental and Theoretical Modulus of Elasticity (In MPa
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To better illustrate this argument we present Figure 8 and Figure 9 showing the agreement
between the experimental and theoretical resultsas afunction of grain angles. To construct these
three-dimension diagrams of Elastic Modulus and Euler's angles, and the lateral view of this
figure, Figure 10, it was used the Matlab software and the reference: Hanselman and Littlefield
(1998).

Theoretical vs Experimental Elastic Modulus(o},in MPa
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Figure 8- Theoretical Curve and Experimental Vaues of the Modulus of Elagticity.

Theoretical and Experimental Elastic Modulus vs Euler Angles
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Figure 10- Lateral View Of TheThree -Dimension Diagram Of Modulus of elasticity From The
Theoretical And Experimental Data.

Weobservethat the continual curveisthetheoretical curve based on the expression of Equation
(25) and the plotted points are the experimental data.

In summary, we can point out that there aresome valuesthat perturb thelinear model, but, in
general, the regression analysis provides results that are considered satisfactory for wood.

CONCLUSIONS

In this paper, it was described the general concepts of the orthotropic elastic model, particularly
the rectilinear model, in order to verify the adequacy of this model for wood, by analyzing
experimental data obtained from compression tests in Guapuruvd and theoretical data from a
specific expression resulted from this model.

We have dready commented that the variation of grain angle constitutes the main reasonfor
wood anisotropy, and strongly affects the values of the constitutive tensor components.

We have aso observed that the use of the test device and the specimen configuration are
important to avoid perturbation in stressand strain fields. It is convenient to measure thestrains
as far as possible from the contact between specimen and test device surface.

In general, the most important conclusion that was drawn from this study can be summarized
as follows:

* The agreement between the rectilinear orthotropic model, described by the theoretical
vauesand the experimental values, can be considered satisfactory. T he present statistical andyses
indicated that only some results of the data did not adequately fit in the model especialy because
wood to be a non-homogeneous and an anisotropic material.
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It is important to notice that this conclusion is restricted to the current experimental data. In
order to make generaizations about these results, it is necessary to perform more tests taking into
account other speciesof wood, and in other different physical situationsof moisture content, specific
gravity and temperature as well.
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NOTATION

. B> @, constants

z,],k |nd|c&s
g,; strain tensor, strain
o*_.l,: stress tensor, stress
x,, X, x,and x, (or X,Y, and z): coordinate system
U.: strain energy function
C ; tensor of material elagtic constants

- compllance tensor
é modulus of elasticity related to i direction
G shear modulus related to ij -plane
v Poisson's ratio in ij - plane
Exp modulus of elasticity from the experimental data
E, . modulusof dasticity in z-axis from theoretical data
A, K: matrix,




Concerting the Eladtic...: . Tadeu

a;: elements of tensor or matrix

l coordl nate transformation tensor, coordinate
% (L, R, T): material axes

L: Longitudinal direction

T: Tangential 1 direction

R Radial direction

A, p , @: Euler s angles

R-s0: Coefficient of Determination

o probability

- parameter of analysis of the variance






