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ABSTRACT 

m o n g  the construction materials, wood reveals an orthotropic pattern because of unique 
characteristics in its internal structure with three axes of wood biological directions (longitudinal, 
tangential and radial). The effect of grain orientation on the elastic modulus constitutes the 
fundamental cause for wood anisotropy. It is responsible for the greatest changes in the values of 
the constitutive tensor components, and, thus in the elastic constant values of wood. The goal of 
this article is to verify the adequacy of the orthotropic model for wood, basically expressed by the 
modulus of elasticity E. t related to a determined direction. Coordinate transformation between 
the materials axes (L, R andT) and Euler's angles is considered to use a constitutive equation for 
orthotropic materials. The main purpose of this analysis is to theoretically explore the coordinate 
transformation in the three - dimensional point of view and also to statistically compare the 
results of modulus of elasticity from compression test in a Brazilian wood species, Guapuruvzi 
(Schizolobiumparahybd), with values obtained from a theoretical expression. The results from the 
analysis, in which the coefficient of determination (R-sq) was equal to 0.965 for a linear least 
squares analysis, showed that the orthotropic model is adequate to be applied. 

Keywords: Modulus of Elasticity of Wood, Compression Test, Orthotropic Material. 

RESUMEN 

La madera, entre 10s materiales de construcci6n, presenta un comportamiento ortotr6pic0, esto 
debido a su estructura interna con tres ejes eldsticos de simetria: longitudinal, tangencial y radial. 
El efecto de la orientaci6n angular de las fibras en el m6dulo eldstico constituye la causa fundamental 
de la anisotropia en la madera. Este efecto es responsable por 10s grandes cambios en 10s valores de 
10s componentes del tensor constitutivo, y, consecuentemente en 10s valores de las constantes 
eldsticas de la madera. El objeto de este articulo es verificar la adecuaci6n del modelo ortotr6pico 
para la madera, expresado bhicamente por el m6dulo de elasticidad E referido a una direcci6n 
determinada. Se consider6 una transformaci6n de coordenadas entre ids ejes del material (L, R y 
T) y 10s ingulos de Euler para utilizar una ecuaci6n constitutiva para materiales ortotr6picos. El 
prop6sito principal de este andlisis es explorar te6ricamente la transformaci6n de coordenadas, 
desde el punto de vista tridimensional y tambikn, comparar estadisticamente 10s resultados del 
m6dulo de elasticidad obtenido a tqv&s:del,ensayo de compresi6n en la madera brasilefia de la 
especie, Guapuruvd, con 10s valores obtenidos por medio de una expresi6n te6rica. Los resultados 
de este andlisis, en el que el coeficiente de determinacidn (R-sq) fue igual a 0.965 en un andlisis de 
minimos cuadrados lineal, mostr6 que el modelo ortotr6pico es vdlido para ser aplicado. 

Palabras Claves: M6dulo de Elasticidad de la Madera, Ensayo de Compresi6n, Material 
Ortrot6pico. 
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INTRODUCTION 

The most general elastic constitutive model formulated to describe the mechanical behavior of 
material is the anisotropic model. This kind of model implies that there is no material symmetry, 
and mechanical properties in each direction are different. O n  the other hand, if there is material 
symmetry, the material can be denominated, for example, orthotropic or isotropic. In this context, 
the adequacy of a determined material for a certain elastic model is based on the existence of 
elastic symmetry axes. In these axes, denominated elastic principal axes, there is invariance of the 
constitutive relations under a group of transformations of coordinate axes. 

In fact, the study of anisotropy is to develop the constitutive law that governs the elastic 
behavior of the material and, consequently, to determine the constitutive tensor, SqkP and its 
components. In a completely elastic and anisotropic model this tensor has 8 1 unknown coefficients. 
By using adequate simplifications, this number can be reduced to 9 coefficients, which is 
denominated orthotropic model, or to 2 independent constants, which is the isotropic model. 

Among the construction materials, wood follows an orthotropic pattern due to its unique 
internal structure along the three axes ofwood biological directions (longitudinal, tangential and 
radial). Thus, there are 9 coefficients to be determined. 

Because of the nature of wood, there are some parameters that can interfere with these elastic 
constants and such parameters include moisture content, specific gravity and the grain orientation. 

On the other hand, focusing on the wood anisotropy, the variation of grain angle constitutes 
its fundamental cause. It is responsible for the greatest changes in the values of the constitutive 
tensor components, and, consequently in the wood elastic constants. 

Many procedures have been used to analyze the wood behavior under a uniaxial direction and, 
determined the elastic constants of wood using uniaxial compression (or tensile) tests as well. 
Conversely, wood under a three-dimensional field view is less studied and consequently the constants 
of wood and their relationship are not fully quantified. 

In this way, the aim of this paper is to verify the adequacy of the orthotropic model for wood, 
analyzing the results of compression tests in Brazilian wood species, Guapuruvzi (Scbizolobium 
parabyba) and then comparing them with the theoretical values obtained from a specific expression. 
In order to carry out this analysis, it is necessary to transform the angles measured on the surface 
of the specimen to Euler's angles and to apply the correct coordinate transformation tensor. 
Thus, this study addresses an investigation, on the basis of both theoretical and experimental 
aspects, in which it focuses on a three-dimensional coordinate transformation, which is usually 
less investigated in this area. 

MATERIALS AND METHODS 

Elastic Properties Of Anisotropic Materials 
According to Love (1944) and Chen and Saleeb (1982), among others, the laws and equations 
that govern engineering problems are related to the stored energy in a solid. So, an elastic solid is 
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capable of storing the energy developed by the external work and transforms it into potential 
elastic energy that is denoted as strain energy. During this process, the body is deformed, but 
recovers its original shape and size once the external force is removed. 

In this condition, if no energy is dissipated during the process of deformation, under adiabatic 
and isothermal conditions, the derived equations from this supposition are termed elastic models 
of Green and the material that makes the body as hyperelastic material. Thus, a hyperelastic 
material is the one that has a strain energy function, denoted by U. 

The elastic material of Green is, in fact, a special case of the most general elastic material called 
elastic material of Cauchy, but considering the existence of the U , in order to maintain unaltered 
the laws of thermodynamics. These laws say that an elastic material produces no work in a closed 
loading cycle. Using the strain energy function and considering the Green elastic model, 
formulations of the constitutive laws for different classes of elastic materials can be established. 
So, consider a strain energy function given by: 

where C, , aij, biikl a,. are constants and E, is the strain tensor. In view of the strain energy 
I /  

formulation where the strain energy has a stationary value in relation to the strain tensor, it is 

JU" 
possible to set C, = 0. From equation (1) and considering that: Oij =- a&ij 7 the stresses can be 

expressed by: 

oij 'aij + ( p i j k l  + pk1ij)'kl (2) 

For an elastic body, the current state of stress depends only on the current state of strain. It  may 
also be taken into the account the fact that a,. =0, since that the initial strain field corresponds to 
an initial stress free state, and (bihL + bklJ can be taken as Cykl, so, mathematically, the constitutive 
laws can be written as: 

in which: 0.. is the stress tensor, E~~ is the strain tensor, Cyh, is the tensor of material elastic 
?I 

constants. 
Agreeing that I Cyk, 1 ;. O , the equation (3) can be expressed as: 

where: Sjjhl is the compliance tensor. 
The constitutive laws may also be written in matrix form as: 



Similarly for SjkP we obtain: 
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On the other hand, according to Lekhnitskii (1 98 I), all bodies, on the whole, can be divided into 
homogeneous and non-homogeneous bodies, and isotropic and anisotropic as well. 

When a body is considered to be homogeneous, its physical properties, such as density-, remain 
111variant in all directions, in any of its points. For non-homogeneous body its properties are not 
constants. 

If the elastic properties of the material are the same in certain directions, then the material 
exhibits symmetry with respect to these directions. If symmetry exists, the material is generally 
said to be isotropic. Otherwise, if there is no symmetry at all, the material is said to be anisotropic. 

Another interesting issue to be pointed out is that when a body presents certain kinds of 
symmetry, the constitutive relations are simplified. These simplifications can be done in different 
ways just as those used by Love (1 944), where the strain energy function remains unaltered by all 
symmetrical coordinate system substitutions. Thus, for example, a corresponding substitution 
given by three axes of elastic symmetry, x';=-x.(x'=-x;Y'=Y;z'=-Z) I does not change the value of U. a 

Lekhnitskii (1 981), on the other hand, performs these simplifications by in two different coordinate 
systems, symmetrical one to other. The author compared the obtained constitutive relations and 
identified the existence of the elastic symmetry. 

A material with elastic symmetry under. the linear transformation x'.=l .x., with I .. being the ' I / /  'J 
coordinate transformation tensor, requires that the constitutive tensor, either C or S comply 

rsPq up',' 
with the following condition: 

In this context, there are four cases of elastic symmetry, which are considered most important. 
They are: one plane of elastic symmetry, three planes of elastic symmetry (orthotropic material), 
transversely isotropy material and isotropic material. Since the purpose of this paper is to consider 
wood as an orthotropic body, we only analyzed this kind of elastic symmetry. 

Thus, a body referred to a coordinate system x is defined as orthotropic material if through 
each point there are three mutually perpendicular axes of elastic symmetry. Then, using the 
coordinate system x,, X, and X, (or X, y, and z), perpendicular to the three planes of material 
symmetry and considering the elastic properties to be invariant under counterclockwise rotation 
180" of about three axes, and using one at time as showed in Figure l:, i t  is possible to determine 
the constitutive tensor for orthotropic materials. 
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Figure 1-1 80° - Rotation about x,. 

Consequently, we obtain that: 

And we find, either C or S can be wtitten by: 
nP$' UP4 

Now, using the engineering notation for elastic consrants, we have that: 



. . 
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where: E. I is the modulus of elasticity related to i direction, G.. is the shear modulus related to i j  - 
tl 

plane and v.. is the Poisson's ratio in ij - plane. 
' I  

In this way, arbitrating for wood the orthotropic model, with the three elastic principal axes 
denoted L, R and T ,  which can be seen in Figure 2, the components of the any tensor are 
determined by replacing the indices 1,2 and 3 by L, T and R. 

Figure 2- Material Axes and Board Axes for wood. 

The effect of Grain Angle 
In general, as already pointed out the variation of grain angle causes greatest changes in the 
constitutive tensor components, and, obviously in the wood elastic constant values. 

Many researchers, in the theoretical and experimental point of view have long studied the 
effect of grain angle. One of the most important procedures was formulated by Hearmon (1948), 
who reported the effect of grain angles on all the components of S9,,, showing that for wood it is 
possible to obtain negative values of Poisson's ratio, which emphasized the wood anisotropy. 

Goodman and Bodig (1970), presented the following coordinate transformation matrix in 
order to determine the wood elastic properties with respect to rotation 8 about the L axis and $J 

about R - axis: 

The material axes and the board axes are: R, T,and L, xi (x, y, z), respectively. Figure 3 shows these 
axes. 

cos@ -sin@cosO sin@cosO 

C O S ~  sin 6 - 

- sin@ - cos@sin0 cos@cose - 

[i] (1 1) 

T 
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Figure 3- Goodman and Bodig's coordinate transformation for wood. 

Equation (1 1) can be generalized for two coordinate transformations that can be written by: 

In terms of tensor notation, I@represent the set of direction cosines and I and 2 are, respectively, 
the first and the second rotations. Since no rotation about T was considered, this coordinate 
transformation is limited to cases where the L material axis lies in the x,- X, plane. 

Bindzi and Samson (1995) derived another coordinate transformation relation with rotation 
4 about L-axis and I/J about R-axis as follows: 

-cos@ - sin@cosO sineinly - 
= sine cos@cosly -cos@inly 

0 sin ly  cosly 

It can be noticed that the R-axis lies in the X-y plane. This equation can be got using Equation 

(12). 

Both this and Goodman and Bodig's transformations are considered limited since it is not 
possible to obtain all relations between sthe board and material axes. 

Hermanson (1996), studying the transformation of elastic properties for lumber to align these 
axes (x, y, Z) with the material axes x'. I (L, R T),  used three rotations A, p and cp (denoted Euler 
's angles) about X, y and z axes, as can be seen in Figure 4. 
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Thus, we can write that: 

or in terms of matrix, that: 

with A being a product of three matrices as defined as follows: 

Observe that Equation (14) is similar to Equation (12), where the superscript 3 represents the 
third rotation. 

cosA sinA 0 0 0 

A =  [ ,  -sinA cosA o o cosp . 
1 0 - sznp cos p 

- 

Figure 4 - Euler's angles A, p and CP. 

C O S ~  sin4 0 

- P - [ - : $ ~ : " ]  

The final relation among these systems leads to: 

[ g  = 1.1 

.Error!Marcador I no definido. 

where A is determined by: 

- cos hcos$ - sinhcos psin$ coshin$ + sinhcos p cos$ sinhinp 

A = - sin$ cos $J - cos h cos psin $ - sinhsin $ + cos A. cos p cos $ cos h i n p  ] 1 9 )  

sin psin$ - sinp cos $ cos p 
. 
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After that, the three Euler's angles were related to the surface angles a, fi and y, through the 
following relations: 

sina cos /3 
t j  = arctg[ - cosmin/3 ); 

sinp 
cos mint$ 

sin y cos @ - cos pin@ 
A = arctg 

cos p(cos y cos @ + sin ysin@ 

These angles can be seen in Figure 5: 

Y 
Figure 5- Surface angles a , fi and y. 

In this way, it was possible to find the Euler's angles by knowing the surface angles and evaluating 
all wood elastic constants by using the complete coordinate transformation to elastic properties, 
described by Equation (7) or using Equation (21) given by: . . - 

Shpq = I  ril sj1 pkl q ~ s i j ~  
or in terms of matrices by: 

where: I .., Kand [aT, the transpose of K; are function of components of the matrix A. The 
'I 

matrix Kis the following matrix: 
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and: 

Now, from Equation (21), we can determine, for example, SIIll  , S,,,, , S ,,,, or, simply, the 
board elastic moduli [see Equation (1 O)], by: 

where: i= x, y, z . 

It is noted that the terms: a ~ i  , a ~ i  a ~ ;  are obtained from Equations (18) and (19). 

Experimental Methods 

The experimental data used to analyze the adequacy of the wood elastic behavior for orthotropic 
elastic model were obtained in Lamem- S5o Carlos-Brazil, following the procedure used by Mascia 
(1993). The specimens which were used consisted of wood blocks of 6 cm x 6 cm x 18cm of 
Guapuruvzi (Schizolobiumpa~ahyba) species obtained from tree stem, according to the following 
schematic. The moisture content was around 12% at ambient temperature ( 25" C) and the 
specific gravity around 0.40 g/cm3. 
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Figure 6- Scheme of the specimens used in compression test 

The goal of this procedure is to determine the modulus of elasticity in some grain orientations 
determined with respect to the R-T, the R-L and T-L plane. 

To achieve this, firstly, lumbers were cut in such a way so that one axe direction in the R-T 
plane varying in the following angles: 0",20",45",70° and 90" and the length axe being parallel to 
the L direction. After this, blocks were obtained from these lumbers following the same direction 
but varying the angles over the lumber axe in the R-T plane by 0", 3",5",7" and 10" . In this way, 
25 specimens were obtained for the compression tests. We have to emphasize that this procedure 
was very carefully designed and needs great care to accomplish. 

It was used the AMSLER test machine with 250 kN load capacity and strain gages to measure 
the strains. 

RESULTS AND DISCUSSIONS 

In this work, only the modulus of elasticity in z-axis was investigated by comparing the experimental 
data, denominated Eap with and the theoretical predictions from Equation (25), Etheo. To use 
Equation (25), it is necessary to know the following elastic constants: 

These parameters were determined from the compression test data [Mascia (1993)], whose 
values are : 

ER =519,ET-=287,EL =3507,GTL =421,GRT =73,GLR =378, 
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The above values have the unit of MPa. The values of Poisson's ratios are given as follows 
[Mascia (1 993)l: 

Modulus Of Elasticity: Experimental And Theoretical Data Comparison 

In the range covered by the 25 sets of data, it was considered to establish relations between 
theoretical and experimental values, through the statistical regression analysis. 

This analysis provides the following regression: 

with : R-sq = 96.5% (Coefficient of Determination) and where Eth is the modulus of elasticity in 
z-axis, E z , calculated from Equation (25) and E is obtained from the experimental data. 

a+' 

Detailed data both for the theoretical calculations and experimental measurements are given 
in Table 1 whereas Table 2 shows the Analysis ofvariance. The analysis was based on the methods 
of Montgomery and Peck (1992) and Ryan (1994), and Minitab software. 

Table 1 

Table 1 MOMUS of  Elasticity Ei @Pa)  

I Specimen EBXP W a )  Et~u 0 Specimen Emll xiha o 
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Table 2 

Table 2- Analysis of the Variance for Significance of Regression 

Source of I Sum of Degrees Mean Fo P(?/o) 
I , 

, Variation i Squares of Square Probability 

Freedom ' 1 1 

29810815 1 2981081 663.61 0.0001 
; ~ ~ ~ ~ ~- - -  -~ ~~ ~ 

i Resiclual 1033210 23 44922 I 
I . - .~ .~ - - - 

; Total 30844025 24 

From this analysis of the variance we can conclude that the regression between the theoretical 
values and the experimental data is significant. This means that we can reject the null hypothesis 
.with a high level of significance. We can observe that if the observed value of Fo is large, the 
parameter E is non- zero for a reached probabilityp . In other words, the agreement among the 
theoretical vxues of the elastic modulus and the experimental values described by Equation (26) 
is satisfactory. 

Figure 7 shows the regression plot, in which, by analyzing the prediction interval, with 0.95 
confidence coefficient, we can observe that some results in the 25-data set did not adequately fit 
in the confidential interval of the linear model but all of them fitted adequately in the predicted 
interval. This statistically reflects the capacity of predicting of this model. 

Regression Plot 

- Regression 
. . . . . - - - - - .  95%CI 

- -  95%PI 

0 1000 2000 ' 3000 4000 

Experimental Elastic Modulus (MPa) 

Figure 7- Regression Plot Of Experimental and Theoretical Modulus of Elasticity (In MPa 
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To better illustrate this argument we present Figure 8 and Figure 9 showing the agreement 
between the experimental and theoretical results as a function of grain angles . To construct these 
three-dimension diagrams of Elastic Modulus and Euler's angles, and the lateral view of this 
figure, Figure 10, it was used the Matlab software and the reference: Hanselman and Littlefield 
(1998). 

Theoretical vs Experimental Elastic Modulus(o),in MPa 

Figure 8- Theoretical Curve and Experimental Values of the Modulus of Elasticity. 

Theoretical and Experimental Elastic Modulus vs Euler Angles 

L U 
Ro Angles,in radians 

Lambda Angles.in radians 

Figure 9- Theoretical and Experimental Values of the Modulus of Elasticity. 
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Theoretical vs Experimental Elastic Modulus(o).in MPa 
4000 ........................................................................ 

Ro Angles,in radians 

Figure 10- Lateral View Of The Three -Dimension Diagram Of Modulus of elasticity From The 
Theoretical And Experimental Data. 

We observe that the continual curve is the theoretical curve based on the expression of Equation 
(25) and the plotted points are the experimental data. 

In summary, we can point out that there are some values that perturb the linear model, but, in 
general, the regression analysis provides results that are considered satisfactory for wood. 

CONCLUSIONS 

In this paper, it was described the general concepts of the orthotropic elastic model, particularly 
the rectilinear model, in order to verify the adequacy of this model for wood, by analyzing 
experimental data obtained from compression tests in Guapuruvd and theoretical data from a 
specific expression resulted from this model. 

We have already commented that the variation of grain angle constitutes the main reason, for 
wood anisotropy, and strongly affects the values of the constitutive tensor components. 

We have also observed that the use of the test device and the specimen configuration are 
important to avoid perturbation in stress and strain fields. It is convenient to measure the strains 
as far as possible from the contact between specimen and test device surface. 

In general, the most important conclusion that was drawn from this study can be summarized 
as follows: 

The agreement between the rectilinear orthotropic model, described by the theoretical 
values and the experimental values, can be considered satisfactory. The present statistical analyses 
indicated that only some results of the data did not adequately fit in the model especially because 
wood to be a non-homogeneous and an anisotropic material. 
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It is important to notice that this conclusion is restricted to the current experimental data. In 
order to make generalizations about these results, it is necessary to perform more tests taking into 
account other species ofwood, and in other different physical situations of moisture content, specific 
gravity and temperature as well. 
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NOTATION 

CO , $ , pijnr, a(: constants 
i,j, k: indices 
E,,: strain tensor, strain 
u..: stress tensor, stress 
'I 

x i ,  x,, x, and x, (or x , y, and z): coordinate system 
U :  o strain energy function 

tensor of material elastic constants 
Sqkl : compliance tensor 
E.: 1 modulus of elasticity related to i direction 
G..: shear modulus related to ij -plane 
'I 

v..: Poisson's ratio in ij - plane 
rJ 

E : modulus of elasticity from the experimental data 
"P 

Etheo: modulus of elasticity in z-axis from theoretical data 
A, K;. matrix, 



-. 
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a,.: elements of tensor or matrix 
rl 

1;: coordinate transformation tensor, coordinate 
XI (L, R , T): material axes 
L: Longitudinal direction 
T: Tangential 1 direction 
R: Radial direction 
A ,  p , cp: Euler 's angles 
R-sq: Coefficient of Determination 
p: probability 
F,,: parameter of analysis of the variance 




