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EVALUATION OF PHYSICAL AND MECHANICAL PROPERTIES OF WILD CHERRY 
WOOD HEAT-TREATED USING THE THERMOWOOD PROCESS
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ABSTRACT

The aim of this study is to determine the change of some physical properties (oven-dry density, weight 
loss, swelling and anti-swelling efficiency) and mechanical properties (compression strength parallel to grain, 
bending strength, modulus of elasticity in bending, janka-hardness (cross-section, radial, tangential), impact 
bending strength and tension strength perpendicular to grain) of wild cherry woods after heat treatment 
under different durations. Specimens are exposed to temperature levels of 212 °C for time spans of 1,5 and 
2,5 h. Based on the findings in this study, the results showed that oven-dry density, swelling, compression 
strength parallel to grain, bending strength, modulus of elasticity in bending, janka-hardness (Cross-section, 
Radial, Tangential), impact bending strength and tension strength perpendicular to grain values decreased 
with increasing treatment time.

Keywords: Anti-swelling-efficiency, compression strength, janka-hardness, modulus of elasticity, modulus 
of rupture, Prunus avium. 

INTRODUCTION

Faced with increasing pressure to reduce the environmental pollution, worldwide wood manufactures 
started to decrease the amount of chemicals used in wood treatment gradually and are looking for alternative 
ways to modify wood. The heat treatment of wood at high temperature, as a wood modification method, seems 
to be an eco-friendly and viable alternative (Li et al. 2011).

Heat treatment has been particularly developed in Europe during this last decade leading to 
commercialization of heat treated timbers of low natural durability wood species such as willow, poplar or 
birch. The end product, called thermally-modified wood, is produced by mild pyrolysis at temperature range 
of 160 °C to 250 °C under inert atmosphere depending on desired degree of modification. The result is a solid 
product showing different characteristics compared to its original timber (Brito et al. 2006).

In general, thermal treatment changes the chemical composition of wood, reduces the wood hygroscopicity, 
equilibrium moisture content (EMC), water absorption (WA), its wettability, extractive contents, availability 
of the cell wall polymers for fungal decay, and improves the natural quality and properties of the wood such as 
dimensional stability, water repellency, thermal insulating capacity and resistance to bio-corrosion. Therefore, 
the thermally-modified wood material has new properties (Mohareb et al. 2012).

A decrease in mechanical properties due to the material loses in cell wall, hemicellulose degradation and 
the modification of long chain molecules, together with an increased brittleness, is the main drawback of heat-
treated wood, limiting its use to applications where good mechanical properties are not required (Borrega 2011).
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Wild cherry (Prunus avium) is a deciduous tree that grows to a height of 15-30 m, with a trunk diameter 
up to 1,5 m. P. avium is native to Europe, western Turkey, and northwestern Africa. Its wood is hard, reddish 
brown, and widely used for wood turning, manufacturing cabinet, veneer, and musical instruments (Eşen et al. 
2005). Recently, the use of wild cherry wood has grown in popularity in Turkey and surrounding countries due 
to high demand for this species. Both surface quality and color changes of this species have been investigated 
previously, but there is limited or no information on how heat treatment would affect its mechanical and 
physical characteristics. The main objective of this study was to evaluate the effect of thermal treatment on 
the physical and mechanical properties of wild cherry wood.

EXPERIMENTAL

Materials
The sample trees of wild cherry wood (Prunus avium)  used for the present study were harvested from a 

mixed oak-hornbeam wild cherry  stand in the Duzce Forest Enterprises, western part of Turkey (ISO 4471, 
1982). Sections of 1,5 m were cut from the 2-4 m height of trees to obtain samples for strength property 
measurements. Boards which are 8 cm in thickness sawn and sawdust immediately removed from surfaces. 
Then, boards were stored in an unheated room for air drying (ISO 3129, 1975).

Methods
Heat treatment was carried out under steam atmosphere with a laboratory kiln from Nova ThermoWood 

in Gerede, Turkey. Steam is used during the drying and heat treatment as a protective vapor. Protective gas 
prevents the wood from burning and also affects the chemical changes taking place in wood. The heat treatment 
was applied according to the method described in the Finnish ThermoWood Handbook (FTWA 2003). At first, 
the temperature of the kiln was raised near to 100°C. When the temperature inside the wood had risen to near 
the same temperature, the kiln temperature was carefully increased up to the actual treatment temperature. 
The target temperature was 212°C. The time of heat treatment at the target temperatures were 1,5 and 2,5 h in 
every test run. After the heat-treatment phase, the temperature was lowered to 80 to 90 ºC using water spray 
system. Conditioning was carried out to moisten the heat treated wood and bring its moisture content to 4–7%.

After heat treatment, treated and untreated samples were conditioned at a temperature of 20±2ºC with 
65 percent relative humidity according to ISO 554. The moisture content of the samples was 6 percent after 
heat treatment. Following heat treatment in a conditioning room, samples reached to equilibrium moisture 
content ranging from 8 to 9 percent.

Small and defect-free specimens (20 x 20 x 30 mm) were cut from the boards according to ISO 3131 to 
determine oven dry densities and swelling (tangential, radial, longitudinal [α(t, r, l,v,)]; ISO 4859).

Weight loss after heat treatment was estimated according to the following equation:

WL(%) = (m0-m1) / m0x100

where m
0
 is the initial oven dried mass of the wood sample before treatment and m

1
 is the oven dried mass 

of the same sample after treatment.

The dimensional stability was appraised in terms of the anti-swelling efficiency (ASE). Anti swelling-
efficiency represents the difference between the swelling of the treated and untreated wood. The anti-swelling-
efficiency (ASE) was determined after test samples were soaked in water at 21°C at a water flow rate of 20 
ml/s for 7 days. The volumetric swelling coefficients were calculated according to the formula:

S(%) = (V2-V1) / V1x100
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where V2 is the volume of the water saturated wood and V1 is the sample volume of the dry untreated or 
treated wood, respectively.

The percentage of ASE was calculated for the wet and oven dried volumes of the treated and untreated 
blocks according to:

ASE (%) = (Sc-St) / Scx100

where S
c
 is the volumetric swelling coefficient of the control samples (untreated samples) and S

t
 is the 

volumetric swelling coefficient of the treated samples.

Following the air-drying process, small and clear specimens were cut from the boards according (ISO) 
to determine compression strength parallel to grain (σc//) (ISO 3787, 1976), bending strength (MOR) (ISO 
3133, 1975), modulus of elasticity in bending (MOE) (ISO 3349, 1975), janka-hardness (Hj) (cross-section, 
radial, tangential) (ISO 3350, 1975), impact bending strength (σi) (ISO 3348, 1975) and tension strength 
perpendicular to grain (σt┴) (ISO 3346, 1975). The specimens were then conditioned at 20±2ºC with 65% 
relative humidity according to ISO 554 (1976). After acclimatization, mechanical properties of the wild 
cherry wood were determined.

At the end of experiments, moisture contents (M) of specimens were measured according to ISO 3130 
(1975) and the moisture content of specimen in which moisture content deviated from 12% determined. Strength 
values were corrected (transformed to 12% moisture content) using the following strength conversion equation:

δ12 = δm * [ 1 + α (M2 – 12) ]

where δ12 = strength at 12 percent moisture content (MPa), δm = strength at moisture content deviated from 
12 percent (MPa), α = constant value showing relationship between strength and moisture content (α=0,05 
0,04 0,02 0,025 0,015 0,04 and 0,025 for σc//, MOR, MOE, σi, σt and Hj, respectively) M2= moisture content 
during test (%).

For the oven-dry density, swelling, compression strength parallel to grain (σc//), bending strength (MOR), 
modulus of elasticity in bending (MOE), janka-hardness (Hj) (cross-section, radial, tangential), impact bending 
strength (σi) and tension strength perpendicular to grain (σt┴), all multiple comparisons were first subjected 
to an analysis of variance (ANOVA) and significant differences between mean values of control and treated 
samples were determined using Duncan’s multiple range test.

RESULTS AND DISCUSSION

Table 1 shows the results of some physical properties (oven-dry density and swelling) and mechanical 
properties (compression strength parallel to grain, bending strength, modulus of elasticity in bending, janka-
hardness (cross-section, radial, tangential), impact bending strength and tension strength perpendicular to 
grain) for 1,5 h and 2,5h of treatment times for all groups. According to the averages, all the parameters 
decreased with increasing time. Not only the average values changed significantly but also the changes were 
significant in ANOVA and Duncan’s multiple range test results.

It is evident from the results shown in table 1 that the oven-dry density, swelling, compression strength 
parallel to grain, bending strength, modulus of elasticity in bending, janka-hardness (cross-section, radial, 
tangential), impact bending strength and tension strength perpendicular to grain values decrease with increasing 
heat treatment time under the conditions used. The maximum decrease for each parameter was recorded for 
the treatment carried out at a temperature of 212°C and treatment time of 2,5 h.
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The lowest oven-dry density values were around 436 kg/m3 for wild cherry wood heat-treated at 212ºC for 
2,5 h while the oven-dry density values of control specimens for wild cherry wood were around 566 kg/m3.

In relation to the density decrease, Esteves and Pereira (2009) reported that the degradation of hemiceluloses 
into volatile products and the evaporation of extractives are the main reasons.

Weight loss values generally exhibited a decrease with increasing heat treatment duration compared to 
the weight loss of control groups of wild cherry wood. The highest weight loss values were obtained from 
the variations at 212ºC for 2,5 h for wild cherry (~18,70%). Zaman et al. (2000), with Pinus sylvestris and 
Betula pendula treated between 200 and 230ºC during 4h and 8h, and it was determined that the mass losses 
for pine were smaller than those for birch: for pine, the mass loss varied between 5.7% (4h) and 7,0% (8h) at 
205ºC, and between 11,1% (4h) and 15,2% (8h) at 230°C, and for birch between 6,4% (4h) and 10,2% (8h) 
at 200°C and between 13,5% (4h) and 15,2% (8h) at 220°C. 

Weight loss of wood is one of the most important features in heat treatment and is commonly referred to 
as an indication of quality. Weight loss depends on wood species, heating medium, temperature, and treatment 
time (Esteves and Pereira 2009).

The maximum decrease in swelling values was observed when wild cherry samples were treated at 
212°C for 2,5 h. For wild cherry samples 70,70%, 69,78%, and 63,26% decrease in swelling were observed 
for longitudinal, radial and tangential directions, respectively. Tjeerdsma et al. (1998) reported that the heat 
treatment allowed the reduction of swelling (total swelling from dry samples until saturation) from 7,3% to 
5,7% for Fagus sylvatica and from 4,7% to 2,8%, for Pinus sylvestris corresponding to efficiencies of 22% 
and 40%, respectively. A decrease in swelling results indicates an increase in dimensional stability, which is 
required for several uses of wood.

This reduces the swelling of the cell wall preventing or limiting the penetration of (non-) enzymatic 
systems necessary for fungal decay. Moreover, a reduction in water absorption reduces the overall swelling 
and shrinkage of wood, hence improving its dimensional stability (Boonstra 2008).

The maximum anti-swelling efficiency for wild cherry (66,80%) wood was obtained after heat treatment 
at 212°C for 2,5 h.

Compression strength values of wild cherry wood samples were decreased with increasing treatment 
time. The maximum reduction in compression strength for wild cherry (23,59%) wood was obtained for the 
treatment at 212°C for 2,5 h.

The lowest bending strength for wild cherry was observed when the wood samples were treated at 212ºC 
for 2,5 h. The decrease was 50,52% for wild cherry for 2,5 h treatment time at 212ºC.

The highest decrease in modulus of elasticity for wild cherry was found to be 39,50% at 212ºC for 2,5 h. 
Shi et al. (2007) studied the mechanical behaviour of Quebec wood species heat-treated using the ThermoWood 
process and concluded that the modulus of rupture decreased between 0% and 49% for heattreated spruce, 
pine, fir, and aspen, while for birch the modulus increased slightly (6%) after the heat treatment. Heat-treated 
spruce and pine modulus of elasticity decreased between 4% and 28%; however for fir, aspen, and birch, the 
modulus generally increased.
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Highest decrease in impact bending strength values were observed when wild cherry samples were treated 
at 212ºC for 2,5 h. The decrease was 62,27% for wild cherry for 2,5 h of treatment time at 212ºC.

Decrease in tension strength perpendicular to grain was found to be 18.99% for wild cherry compared to 
the untreated control samples, when treated at 212ºC for 2,5 h.

According to these results, the lowest decreases in tangential, radial, and longitudinal janka hardness 
values (22,53; 19,35; and 10,83%, respectively) were observed in the samples treated at 212ºC for 2,5 h. 
Sundqvist et al. (2006) found that treatments for birch at 180ºC for 1 to 2,5 hours reduced strength and 
hardness significantly. Losses in mechanical properties can be linked to the mass loss and increase in formic 
and acetic acid concentrations.

Mechanical properties of heat-treated wood, although not explicitly specified, appear to have been 
generally tested at constant ambient conditions. The reasons for the change in mechanical properties hasbeen 
extensively discussed by Korkut and Kocaefe (2009). The degradation of hemicelluloses has been proposed 
as the major factor for the loss of mechanical strength, affecting especially bending and tensile strength, but 
also the crystallization of amorphous cellulose might play an important role.

Polycondensation reactions of lignin, resulting in cross-linking, are mentioned as having a positive impact 
on the mechanical properties of heat-treated wood mainly in the longitudinal direction. The differences between 
the compressive resistance parallel to the fibre (increase) and compressive strength radial (decrease) are 
attributed to the anisotropy of crystalline cellulose. The mechanical behaviour of wood is strongly dependent on 
its moisture content below the FSP The lower equilibrium moisture content might affect positively the strength 
properties of heat-treated wood under service conditions, but this effect is superseded by the degradation of 
the chemical compounds (Borrega 2011).

Table 2 shows the level of decrease in various physical and mechanical properties of wild cherry wood 
with increased thermal treatment duration.

Table 2. Percentage decrease of some properties in wild cherry wood following heat treatment for 
different durations.

In this study, the physical and mechanical properties of wild cherry wood were determined by heat treatment 
at different durations. These properties can be compared with the results of other studies (Tjeerdsma et al. 
1998, Zaman et al. 2000, Sundqvist et al. 2006, Shi et al. 2007, Gunduz et al. 2009) in literature which are 
related to the effects of different durations on physical and mechanical properties of different tree species.
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CONCLUSIONS

In conclusion, it was found that the some physical properties (oven-dry density and swelling) and 
mechanical properties (compression strength parallel to grain, bending strength, modulus of elasticity in 
bending, janka-hardness (cross-section, radial, tangential), impact bending strength and tension strength 
perpendicular to grain) of the wild cherry decreased for the heat treatment times studied compared to the 
properties of their untreated counterparts. 

Due to its more attractive darkened color, decreased moisture performance and improved stability attributes, 
heat-treated wild cherry can be used in applications where they had no use previously. Further studies are in 
progress to determine if heat treatment effects on the the microscopic structure, chemical composition and 
combustion properties of wood.
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