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ABSTRACT

Shrinkage and swelling characteristics of wood as a hygroscopic material affect negatively its 
effective utilization for a variety of applications. Heat treatment is widely used for minimizing the 
negative effects of volumetric swelling and shrinkage of wood. The present study aims to develop 
artificial neural network (ANN) models for predicting volumetric swelling and shrinkage of heat 
treated woods. For this purpose, wood samples were subjected to heat treatment at varying temperatures 
(130, 150, 170 and 190 ºC) for varying durations (2, 4, 6 and 8 h). Experimental results have showed 
that volumetric swelling and shrinkage of wood decreased by heat treatment. Then, neural networks 
models capable of predicting the swelling and shrinkage of the treated woods were developed based 
on the resulting data. It was seen that ANN models allowed volumetric swelling and shrinkage of such 
woods to predict successfully with a limited set of experimental data. This approach was able to predict 
volumetric swelling and shrinkage of wood with a mean absolute percentage error equal to 2,599% and 
2,647% in test phase, respectively. The developed models might thus serve as a robust tool to predict 
volumetric swelling and shrinkage with less number of experiments.  

Keywords: Dimensional stability, heat treatment, hygroscopicity, neural network, swelling, 
wood properties.

INTRODUCTION

For centuries, wood has been widely used as a building material due to its superior properties. 
When compared with other competitive materials, it offers following advantages: it is a versatile 
material; it is a naturally renewable resource; it exhibits highly good thermal insulation; it provides 
a high strength and elasticity despite its low weight; it presents an aesthetic appearance and it is 
environmentally friendly. Such many factors have made the wood more suitable and more usable as a 
building material. However, it is worthy to mention that wood suffers from an unfavorable property. It 
is a highly hygroscopic material, and hence it undergoes shape changes with the fluctuations in relative 
humidity of the surrounding air (Camille and Kmaid 2005, Gryc et al. 2007). 

It is possible to say that hygroscopicity is one of the main distinguishing characteristics of wood. 
It can be defined as the ability of the wood to lose or gain moisture with a change in relative humidity. 
Wood swells or shrinks as a result of this natural process. It is important to specify that volumetric 
swelling or shrinkage occurs below the fiber saturation point where all of the water exists only within 
the cell wall (Hiziroglu 2004, Almeida and Hernández 2006). Changes in humidity below this point 
lead to some problems in the use of wood. For instance, the gluing problems take place because of the 
different dimensional changes of the glued parts (Eckelman 1998). Besides, deformations and crack 
formations arise depending on the development of internal stresses due to similar reasons (Rastislav 
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2006). Such drawbacks adversely affect the use of wood as a building material. On the other hand, 
these problems can be partially reduced if the wood is dried to the moisture content compatible with its 
final service environment (Hiziroglu 2004, Eckelman 1998). However, as mentioned previously, wood 
is easily affected by the changes in humidity of the surrounding air. Hence, it can be said that a more 
efficient solution is to reduce the hygroscopicity of wood. 

Heat treatment is an effective procedure that aims at improving some wood properties (Unsal et al. 
2003, Bal 2015). Heating the wood at high temperatures increases dimensional stability and biological 
durability and decreases hygroscopicity (Gunduz et al. 2008, Baysal et al. 2014). This fact is mainly 
related to the loss of the hemicellulose, which contributes greatly to water uptake due to its hydrophilic 
nature (Paul et al. 2007). In particular, the hydroxyl groups existing in hemicelluloses have a major 
impact on the volumetric swelling and shrinkage. Heat treatment provides a reduction in the number 
of these groups and thus wood absorbs less water (Inoue et al. 1993). As a result, the treated wood 
becomes less hydroscopic and more dimensionally stable compared to untreated wood (Shi et al. 2007, 
Korkut and Aytin 2015).   

In light of the above observations, it is possible to say that swelling and shrinkage are important 
properties that have serious effects on the service life of wood products. It may be also said that heat 
treatment is a method that refers widely to reduce the negative effects of volumetric swelling and 
shrinkage. In the existing literature, many experimental studies for better understanding the impact of 
heat treatment on the amount of volumetric shrinkage and swelling of wood have been conducted so 
far (Esteves et al. 2007, Gunduz et al. 2008, Korkut and Budakci 2010). These studies have revealed 
that a large number of temperature and time values have to be investigated to detect a change in the 
swelling and shrinkage behavior of wood because of heat treatment. However, exhaustive tests bring 
about high costs and loss of time which are not preferable from industrial viewpoint. Recently, artificial 
neural networks (ANNs) have attracted attention of researchers as a new method in predicting various 
properties of materials. ANNs offer effective solutions to deal with complex problems and to uncover 
unknown relationship between input and output variables (Haghbakhsh et al. 2013). ANNs run based 
on learning and, when the established network is trained using an adequate number of data related to 
the problem, a new input that has a similar pattern can be predicted based on the previous learning 
pattern (Avunduk  et al. 2014). As a result, the desired values regarding the problem in hand can be 
provided by carrying out less experimental studies. Due to such advantages, many researchers have 
focused on developing the ANN models for solving various problems of wood and wood products. 
Avramidis and Iliadis (2005), Zhang et al. (2006), Ceylan (2008), Rojas and Ortiz (2010), Esteban et 
al. (2011), Ozsahin (2012), Ozsahin (2013), Tiryaki and Aydin (2014), Tiryaki et al. (2014), Okan et al. 
(2015) and Bardak et al. (2016) are some of the studies carried out on ANN modeling in wood science. 

Although there are above attempts regarding the use of ANN approach for solving various problems 
in wood science, very little information is available on predicting the swelling and shrinkage of wood 
species subjected to heat treatment. Hence, the present study has focused on developing ANN models 
that are capable of predicting the amount of volumetric swelling and shrinkage of heat treated woods. 
In this respect, this study will be the first attempt to model the volumetric swelling and shrinkage of 
wood based on wood species, treatment temperature, and exposure time using ANNs. 

Artificial neural networks (ANNS)

ANNs are information processing tools that try to imitate the function of the human brain to perform 
efficiently a spesific task (Haykin 1999). They have the ability to reveal the complex relationships 
between input and outputs data in any system (Haykin 2008). Among many different kinds of ANNs, 
the multi-layer perceptron (MLP) is known as the most useful type. It is a feed-forward architecture 
that is capable of mapping the set of input data onto a set of proper outputs (Haghbakhsh et al. 2013). 
The MLP architecture comprises a combination of input, hidden and output layers. The input layer 
receives the data regarding the problem under consideration, the hidden layer processes the received 
data, and the output layer presents the response of the network to outside world (Zhang et al. 1998). 
Figure 1 displays a simple MLP architecture. In the case of MLP, the output is calculated as shown in 
Eq. (1) (Tiryaki and Hamzacebi 2014). 
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Figure 1. An example of MLP network.
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In Eq. (1), Y is the predicted value of dependent variable; Xi is the input value of ith independent 
variable; wij is the connection weight between the ith input neuron and jth hidden neuron; βj is the value 
of the bias of the jth hidden neuron; θ is the value of the bias of output neuron; vj is the connection 
weight between the jth hidden neuron and output neuron; g(.) and f(.) are the activation functions for 
hidden and output layers, respectively.

The basic element of ANNs is the neurons. They are connected to each other by a weight factor 
analogously to the biological nervous system (Zhang et al. 1998). The main task of the connection 
weights is to store the information and reveal the relationship between input and output data 
(Haghbakhsh et al. 2013). 

To reveal the complex relationships among data, a neural network does not require a preliminary 
knowledge regarding the problem under consideration. Instead of this, it learns through the samples to 
capture this relationship. A successful ANN model is created by three main phases, which are known 
as training, validation and testing. For this purpose, the existing data are generally divided into three 
subsets (Zhang et al. 1998, Avunduk et al. 2014). In the first stage, the network is trained using the 
training data. During the training, random numbers are designated to the weight corresponding to 
each input variables. The second phase is known as the validation phase. This phase is carried out to 
generalize the established network (Hagan et al. 2002). The last phase is the testing phase that resembles 
the validation phase except in one difference. The validation phase is considered as a criterion to end 
the training phase, while testing phase is performed to measure the performance of the trained and 
validated network (Hagan et al. 2002, Avunduk et al. 2014). Thus, it is possible to properly evaluate 
the performance of the established model (May et al. 2010).

θ
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MATERIALS AND METHODS

Materials

Experimental materials chosen for this study were beech wood (Fagus orientalis Lipsky.) with a 
density of 660 kg/m3 and pine wood (Pinus slyvestris Lipsky.) with a density of 520 kg/m3. The samples 
for the experiments were all randomly selected from Artvin, Turkey. Special emphasis was paid to the 
selection of them without any defects. Thus, the experiments were performed using flawless samples.

Heat treatment application

Experimental samples were subjected to heat treatment at different temperatures (130 °C, 150 °C, 
170 °C and 190 °C) for different exposure times (2 h, 4 h, 6 h and 8 h). This operation was carried out 
using a heating oven controlled at an accuracy of 1 °C under atmospheric pressure. The samples were 
then conditioned to the moisture content of 12% at a temperature of 20 ± 2 °C and a relative humidity 
of 65 ± 5%.  

Determination of weight loss

Experimental samples were dried in a heating oven at a temperature of 103 ± 2 ᵒC prior to heat 
treatment. Oven-dry weights of the samples were then detected with ±0,01 g sensitivity. Following the 
heat treatment, the weights of the same samples were measured again. Eq. (2) gives the weight loss 
of the samples because of heat treatment. The calculated values of the weight loss were presented in 
Table 1. 
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In Eq. (2), W (%) is the weight loss; mb is the oven-dry weight of the sample prior to treatment and 
ma is the oven-dry weight of the same sample after treatment.

Swelling and shrinkage experiments

It is well known that wood changes its dimensions in three different directions: tangential, radial 
and longitudinal. Most researchers reported that the dimensional change (swelling or shrinkage) in the 
longitudinal direction is negligible (Usta and Guray 2000, Gryc et al. 2007). We, therefore, calculated 
the dimensional change in tangential and radial diections of the samples subjected to heat treatment. 
For this purpose, experimental samples of swelling and shrinkage were prepared with dimensions of 
30×30×15 mm. For the swelling, the air-dry samples were dried in a drying cabinet at the temperature 
of 103±2 ᵒC. Then, the tangential and radial dimensions were measured. After this process, the samples 
were kept in water for one week until they became completely saturated. The dimensions were next 
measured again. The amount of the swelling in both tangential (αt) and radial (αr) directions was 
calculated by Eq. (3). The total volumetric swelling (αv) was obtained by the sum of the amount of 
swelling in both directions. Swelling experiments were carried out based on the procedure of TS 4084 
(1983) standard.
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To calculate the volumetric shrinkage of the samples, air-dry samples were firstly kept in water 
for one week, and then the tangential and radial dimensions of them were measured with ± 0,1 mm 
sensitivity. The same samples were next dried in the drying cabinet at the temperature of 103 ± 2 
ᵒC. After drying, the sample dimensions were measured again. The amount of the shrinkage in both 
tangential (βt)  and radial (βr) directions was calculated using Eq. (4). The total volumetric shrinkage 
(βv) was obtained by the sum of the amount of shrinkage in both directions. Shrinkage experiments 
were carried out based on the procedure of TS 4083 (1983) standard.

 s o
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(D D )â (%) 100
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−
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In Eqs. (3) and (4); α is the amount of the swelling as a percentage, β is the amount of the shrinkage 
as a percentage, Ds is the dimension in the saturated state of the sample (mm) and Do is the oven-dry 
dimension of the sample (mm).

Application of ANNs for predicting volumetric swelling and shrinkage

Data collection and preparation

In this study, the change in the volumetric swelling and shrinkage based on wood species, treatment 
temperature and exposure time was predicted by the ANN models developed in the MATLAB software 
package. The volumetric swelling and shrinkage data used in the present modeling study were collected 
by carrying out a series of experiments. A total of thirty-two data were used for each of volumetric 
swelling and shrinkage. 

An important step of model building process is data division. At this stage, the existing data are 
generally divided into training, validation and testing sets (Zhang et al. 1998). Hence, the experimental 
data of volumetric swelling and shrinkage were randomly divided to three data sets (data sets see 
Table 1). Each network was trained with twenty two data (70% of total data) and was subsequently 
validated with five experimental data (15% of total data) and tested with five experimental data (15% 
of total data). It is worth mentioning that each data corresponds to the average of 30 measurements. 
The volumetric swelling (αv) and volumetric shrinkage (βv) data were used in the models, and they were 
given in Table 1.

Model architectures 

Any ANN architecture is formed by the combination of the layers and their neurons (Zhang et al. 
1998). In the present study, the optimal architectures of ANN models for both volumetric swelling and 
shrinkage include one input layer, one hidden layer and one output layer. The optimal architectures 
mean the best explanation of the relationship between input and output data. Figure 2 shows the 
representations of the optimal architectures of the ANN models for predicting volumetric swelling and 
shrinkage of heat treated pine and beech.

β
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Figure 2. Network architectures for models.

Regarding the neurons of layers, it was previously reported that the number of input and output 
neurons corresponds to the number of input and output variables, respectively (Tiryaki and Hamzacebi 
2014). Hence, the inputs of both models for the present study were wood species, treatment temperature 
and exposure time, while the outputs of the models were volumetric swelling and shrinkage. 

It is important to state that the hidden layer and hidden neurons are highly important in terms of the 
success of ANN applications since they allow the networks to capture complex relationship between 
input and output data (Zhang et al. 1998). In this study, an important goal was thus to find the optimum 
number of hidden layers and hidden neurons of both models. Zhang et al. (1998) says that the most 
frequently used procedure in detecting the optimal number of them is a trial and error process. This 
study therefore used the trial and error method to achieve this goal. For each ANN, various network 
configurations were tried until the best network configurations for swelling and shrinkage were found. 
As a result, as seen in Figure 2, the best performance of the ANN models for both swelling and shrinkage 
was provided for one hidden layer and five hidden neurons. 
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Performance evaluation of models

Predictive ability of the established models was evaluated by performance indicators such as 
the mean absolute percentage error (MAPE), the root mean square error (RMSE) and determination 
coefficient (R²). The MAPE and RMSE were used to calculate the error levels of the models, while R² 
was used to determine the relationship or the similarity between experimental and model outputs. The 
values of them were mathematically calculated with Eq. (5) - (6) - (7).

 
                                                                    
                
                      

                                                                                             (5)      

                                                                                                                          (6)

                                                                                                                           (7)
       

Where, ti represents the experimental output, tdi represents the predicted output, N represents the 
total number of samples and t represents the mean of predicted outputs.

RESULTS AND DISCUSSION

Experimental results

Table 1 displays the mean values of swelling, shrinkage and weight loss of pine and beech samples 
subjected to different temperatures and durations of heat treatment.
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Table 1. Experimental values of swelling and shrinkage and weight loss of treated samples.

Wood 
species

Temperature
(°C)

Time
(h) N

Swelling (%) Shrinkage (%) Weight
Loss
(%) αt αr αv βt βr βv

Pine 130 2 60 8,418 4,268 12,686 7,990 4,102 12,092 0,390
Pine 130 4 60 7,830 4,124 11,954 7,494 3,888 11,382 0,582
Pine 130 6 60 7,460 3,986 11,446 7,144 3,756 10,900 0,628
Pine 130 8 60 7,206 3,842 11,048 6,990 3,578 10,568 0,714
Pine 150 2 60 7,308 4,026 11,334 7,042 3,636 10,678 0,670
Pine 150 4 60 6,854 3,812 10,666 6,836 3,306 10,142 0,768
Pine 150 6 60 6,376 3,502 9,878 6,340 3,072 9,412 0,908
Pine 150 8 60 6,054 3,224 9,278 5,488 2,768 8,256 1,176
Pine 170 2 60 6,118 3,332 9,450 5,526 2,666 8,192 1,074
Pine 170 4 60 5,660 3,144 8,804 5,164 2,456 7,620 1,468
Pine 170 6 60 5,182 3,078 8,260 4,866 2,280 7,146 1,838
Pine 170 8 60 4,594 2,986 7,580 4,282 2,160 6,442 2,514
Pine 190 2 60 4,240 2,782 7,022 3,866 2,188 6,054 3,806
Pine 190 4 60 3,676 2,024 5,700 3,146 1,910 5,056 4,878
Pine 190 6 60 3,342 1,808 5,150 2,618 1,542 4,160 5,342
Pine 190 8 60 2,902 1,468 4,370 2,634 1,210 3,844 6,380

Beech 130 2 60 13,908 5,058 18,966 11,216 5,300 16,516 0,318
Beech 130 4 60 13,746 4,986 18,732 11,160 5,212 16,372 0,522
Beech 130 6 60 13,416 4,598 18,014 11,148 5,174 16,322 0,606
Beech 130 8 60 13,162 4,388 17,550 10,854 4,842 15,696 1,264
Beech 150 2 60 13,446 4,648 18,094 11,138 5,224 16,362 1,182
Beech 150 4 60 13,190 4,396 17,586 10,816 4,910 15,726 1,414
Beech 150 6 60 12,956 4,078 17,034 10,524 4,590 15,114 1,736
Beech 150 8 60 12,482 3,764 16,246 10,150 4,282 14,432 1,892
Beech 170 2 60 12,506 3,826 16,332 10,172 4,290 14,462 1,834
Beech 170 4 60 11,690 3,722 15,412 9,888 4,060 13,948 2,182
Beech 170 6 60 10,976 3,474 14,450 9,468 3,754 13,222 2,442
Beech 170 8 60 10,546 3,426 13,972 9,118 3,556 12,674 2,886
Beech 190 2 60 10,520 3,494 14,014 9,000 3,512 12,512 4,064
Beech 190 4 60 9,904 3,146 13,050 8,234 3,260 11,494 5,172
Beech 190 6 60 9,084 2,986 12,070 7,548 3,016 10,564 6,534
Beech 190 8 60 8,036 2,808 10,844 6,964 2,770 9,734 7,662
Note; bold values: testing data, bold italics values: validation data, the other values: training data
αt: tangential swelling, αr: radial swelling, αv: volumetric swelling 
βt: tangential shrinkage, βr: radial shrinkage, βv: volumetric shrinkage
N: Number of samples

The effects of wood species, treatment temperature and exposure time on the amount of volumetric 
swelling and shrinkage of the samples were statistically evaluated by analysis of variance (ANOVA). 
From the ANOVA results, it was understood that the effects of all the variables analyzed on the 
volumetric swelling and shrinkage of the samples were highly significant at the 95% confidence level. 
In the following, significant differences between the groups were detected individually for swelling and 
shrinkage based on wood species, treatment temperature and exposure time by Duncan’s multiple mean 
comparison test. The results of the Duncan test indicated that the mean values of volumetric swelling 
and shrinkage depending on treatment temperature and exposure time consist of four different groups, 
while wood species consists of two different groups. The results of Duncan’s grouping are shown in 
Figure 3 by letters. 
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Figure 3. Mean values of volumetric swelling and volumetric shrinkage of experimental samples 
and the results of Duncan’s multiple mean comparison test.

Once Table 1 and Figure 3 are together evaluated in terms of the wood species, it is possible to see 
that volumetric swelling and shrinkage values of beech are higher than that of pine. From the mean 
values in Figure 3, it can be seen that volumetric swelling and shrinkage of beech wood are 15,77% and 
14,07%; respectively, while corresponding values of pine wood are 9,04% abd 8,25% respectively. It 
can be therefore said that volumetric swelling and shrinkage was higher for beech wood compared to 
pine wood. The main reason behind this was reported as wood density (Guler et al. 2007). This opinion 
was supported by Kord et al. (2010). As found in the current study, it is well known that beech has a 
higher density than pine.
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For the influences of the temperature and time of heat treatment on volumetric swelling and 
shrinkage, it was observed that volumetric swelling and shrinkage significantly decreased in both 
tangential and radial directions with heat treatment. The reduction became greater with an increase in 
temperature and duration of heat treatment. In terms of the volumetric swelling, the greatest value was 
found to be 12,686% for pine samples and 18,966% for beech samples treated at 130 °C for 2 h. With 
heat treatment applied at 190 °C for 8 h, it was seen that the amount of volumetric swelling dropped 
to 4,370% for pine samples and 10,844% for beech samples. Corresponding values of volumetric 
shrinkage were observed as 12,092% for pine samples and 16,516% for beech samples treated at 130 °C 
for 2 h. Similarly to volumetric swelling, volumetric shrinkage values dropped to 3,844% and 9,734% 
for pine and beech samples as a result of the heat treatment applied at 190 °C for 8 h, respectively. In 
briefly, the findings of the present study revealed that heat treatment reduces considerably volumetric 
swelling and shrinkage. Similar findings were also reported by several previous researchers (Feist and 
Sell 1987, Esteves et al. 2007, Schneid et al. 2014, Bal 2015, Korkut and Aytin 2015). Stamm (1964) 
stated that this is mainly associated with the degradation of the hemicelluloses. Hemicelluloses degrade 
during heat treatment, and thus the number of their free hydroxyl groups reduces. The reduction of 
hydrophilic hydroxyl groups in wood leads to an increase in the proportion of lignin. This improves the 
hydrophobic behavior of the wood (de Moura et al. 2011). Wood thus absorbs less water (Inoue et al. 
1993) and it swells and shrinks less compared to untreated wood (Shi et al. 2007). 

For the present study, it is also important to state that swelling and shrinkage in tangential direction 
in wood were found higher compared to swelling and shrinkage in radial direction. Similar observations 
were also reported by Usta and Guray (2000) and Esteves et al. (2007). Usta and Guray (2000) says that 
this can be partly explained by the presence of the ray cells. 

Based on the current study’s findings, it is possible to say that heat treatment is a useful procedure 
to enhance the dimensional stability of wood, which is required for some applications. In earlier 
studies, many researchers reported that heat treated wood can be utilized for outdoor applications 
such as exterior cladding, garden furniture, window and door frames, due to the enhanced dimensional 
stability. Furthermore, such woods gives better durability for coating (Yildiz et al. 2006, Gunduz et al. 
2008, Korkut and Budakci 2010). As a result of the improvoment of their dimensional stability, it can 
be said for the present study that heat treated pine and beech can be effectively utilized in areas where 
they had limited use before. 

Modeling results

Table 2 shows the predicted values of the experimental samples of volumetric swelling and 
shrinkage by means of the ANN models and their percentage errors. 

As seen in Table 2, the prediction of volumetric swelling and shrinkage of the samples was achieved 
with low percentage errors by the established ANN models. Namely, the ANN outputs were highly 
close to the experimental outputs in predicting both swelling and shrinkage. Among all variations, 
the maximum absolute percentage error was 4,718% for swelling and 7,673% for shrinkage, while 
the minimum absolute percentage error was 0,009% for swelling and 0,056% for shrinkage. As seen, 
the amount of the error varies between 7,673% and 0,009%. Due to high degree of the similarity or 
closeness between the experimental outputs and predicted outputs, it is possible to say that the ANN 
predictions are highly good.



487

        Maderas. Ciencia y tecnología 18(3): 477 - 492, 2016Analysis of volumetric swelling and: Tiryaki et al.

Table 2. Predicted values of the experimental samples of volumetric swelling and shrinkage and 
their percentage errors. 

Wood
species Temperature (°C) Time (h) N Swelling (%) Shrinkage (%)

Predicted % Error Predicted % Error
Pine 130 2 60 12,669  0,134 11,909  1,513
Pine 130 4 60 12,100 -1,221 11,396 -0,123
Pine 130 6 60 11,408  0,332 10,930 -0,275
Pine 130 8 60 10,820  2,064 10,604 -0,341
Pine 150 2 60 11,346 -0,106 10,672  0,056
Pine 150 4 60 10,589  0,722 10,112  0,296
Pine 150 6 60 9,953 -0,759 9,3539  0,617
Pine 150 8 60 9,347 -0,744 8,370 -1,381
Pine 170 2 60 9,474 -0,254 8,317 -1,526
Pine 170 4 60 8,776  0,318 7,775 -2,034
Pine 170 6 60 8,196  0,775 7,178 -0,448
Pine 170 8 60 7,566  0,185 6,453 -0,171
Pine 190 2 60 7,009  0,185 5,810  4,030
Pine 190 4 60 5,729 -0,509 5,019  0,732
Pine 190 6 60 4,907  4,718 4,436 -6,635
Pine 190 8 60 4,367  0,069 3,991 -3,824

Beech 130 2 60 18,964  0,011 16,577 -0,369
Beech 130 4 60 18,558  0,929 16,340  0,195
Beech 130 6 60 18,061 -0,261 16,091  1,415
Beech 130 8 60 17,493  0,325 15,852 -0,994
Beech 150 2 60 18,059  0,195 16,404 -0,257
Beech 150 4 60 17,619 -0,188 15,757 -0,197
Beech 150 6 60 17,054 -0,117 15,087  0,179
Beech 150 8 60 16,289 -0,265 14,498 -0,457
Beech 170 2 60 15,870  2,829 14,566 -0,719
Beech 170 4 60 15,402  0,065 14,020 -0,516
Beech 170 6 60 14,792 -2,367 13,305 -0,628
Beech 170 8 60 13,984 -0,086 12,688 -0,110
Beech 190 2 60 14,358 -2,455 11,552  7,673
Beech 190 4 60 13,261 -1,617 10,969  4,568
Beech 190 6 60 12,061  0,075 10,380  1,742
Beech 190 8 60 10,845 -0,009 9,790 -0,575
Note; bold values: testing data, bold italics values: validation data, the other values: training data
N: Number of samples

As mentioned previously, MAPE, RMSE and R² were calculated to assess the prediction capability 
of the established networks. Table 3 gives evaluation results of the models in terms of the values of 
these criteria.

Table 3. Evaluation results of the criteria used in predicting volumetric swelling and shrinkage of 
the samples.

Data sets    Swelling (%)    Shrinkage (%)
  RMSE    MAPE       R2  RMSE   MAPE       R2

Training data 0,046 0,278 0,9999 0,104 0,981 0,9995
Validation data 0,100 1,153 0,9985 0,176 1,955 0,9974
Testing data 0,308 2,599 0,9968 0,491 2,647 0,9847

It is important to note that the ANN predictions are optimum if RMSE and MAPE are found to 
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be close to 0, while R2 are found to be close to 1 (Haghbakhsh et al. 2013). According to Table 3, the 
RMSE values for the test phase were determined as 0,308 and 0,491 in predicting volumetric swelling 
and shrinkage of samples, respectively. It can be thus said that the prediction of volumetric swelling 
and shrinkage was successful in terms of the RMSE criterion. 

Among the evaluation criteria, the criterion of MAPE, which corresponds to the average of the 
errors in Table 2, is mostly accepted as the main criterion in making a decision on the performance of a 
model (Tiryaki and Hamzacebi 2014). The MAPE shows the average of the percentage deviation from 
the targeted value. It is obvious from Table 3 that MAPE values were found as 0,278%; 1,153% and 
2,599% in the prediction of volumetric swelling and 0,981%; 1,955% and 2,647%; in the prediction of 
volumetric shrinkage for training, validation and testing data sets, respectively. These low levels of the 
MAPE demonstrate that ANN approach effectively gives accurate outputs. Lewis (1982) reported that 
predictive ability of a model is considered as perfect if its MAPE value is below 10%. Accordingly, 
the prediction ability of the models for swelling and shrinkage is perfect with MAPE values of 2,599% 
and 2,647% respectively. According to Bas and Boyaci (2007), evaluation of R2 and MAPE together is 
useful to check the validity of a model.

In addition to the criterion of the MAPE, the performance of the models was analyzed based on 
the R2 between the model predictions and the experimental outputs. R2 is a statistical measure of the 
relationship between actual and predicted outputs (Taylor 1990). As referred above, this value should 
be as close to 1 as possible for a successful prediction. Figure 4 and Figure 5 show the plot of the 
experimental outputs versus the model outputs of volumetric swelling and shrinkage of the samples 
for data sets. 

Figure 4. Relationship between the experimental outputs and model outputs of volumetric 
swelling for data sets.

Figure 5. Relationship between the experimental outputs and model outputs of volumetric 
shrinkage for data sets.
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From the plots given in Figure 4 and Figure 5, it can be clearly observed that the R2 values were found 
as 0,9999; 0,9985 and 0,9968 in the prediction of volumetric swelling and 0,9995; 0,9974 and 0,9847 in 
the prediction of volumetric shrinkage for training, validation and testing data sets, respectively. These 
findings mean that the models are capable of explaining at least 99% of the experimental outputs of 
volumetric swelling and 98% of the experimental outputs of volumetric shrinkage in the testing phase. 
Hence, it is possible to say that the proposed networks have a high explanatory. In brief, the high values 
of R2 and the low values of the error terms such as MAPE and RMSE in testing set have demonstrated 
that the ANN approach is highly convenient to model the volumetric swelling and shrinkage of heat 
treated woods. In other words, ANNs have been proved as a robust tool for predicting volumetric 
swelling and shrinkage of the wood subjected to heat treatment without carrying out the more empirical 
investigation requiring much time and high experimental costs. 

On the other hand, as stated before, very limited information is available on predicting volumetric 
swelling and shrinkage of solid wood subjected to the heat treatment using the ANN approach. Only, 
several attempts were made to predict the thickness swelling of wood based composites. For instance, 
Ozsahin (2012) and (2013) used the ANN technique to predict the thickness swelling of oriented strand 
board. These studies have revealed that ANN could be effectively used to model the thickness swelling 
of oriented strand board. Similarly, the present modeling study was highly successful in predicting the 
volumetric swelling and shrinkage of pine and beech woods exposed to heat treatment.   

CONCLUSIONS

This study has focused on modeling the effects of treatment temperature and exposure time on 
volumetric swelling and shrinkage of heat treated beech and pine woods by means of the ANNs. The 
data for modeling study were provided by swelling and shrinkage experiments.

Experimental results have showed that heat treatment significantly reduced the amount of 
volumetric swelling and shrinkage of wood in both radial and tangential directions. This might present 
a major advantage for reducing the problems caused by swelling and shrinkage in wood. 

The higher treatment temperature and longer heating duration provided lower swelling and 
shrinkage. In other words, heat treated wood was more dimensionally stable when it was exposed to 
high temperature compared with exposure to low temperature.

The findings of this study contribute to a better understanding of volumetric swelling and shrinkage 
behaviors of treated woods. This will help to perform more effectively the applications such as coating, 
gluing and finishing.  

The outputs of the ANN models were found to be agreed with experimental outputs. The models 
were able to predict the amount of volumetric swelling and shrinkage of woods subjected to heat 
treatment with an acceptable accuracy. 

Thus, it is feasible to say that the well trained ANN models can be considered to predict the amount 
of volumetric swelling and shrinkage of heat treated woods. As a result, reasonable results can be 
predicted by the ANN instead of carrying out the time consuming and costly experimental investigation.

It is worthy to mention that the prediction of volumetric swelling and shrinkage of the treated wood 
by ANNs may be considered as an alternative approach for practitioners in the wood industry to ensure 
the success of the applications such as coating and finishing.
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