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                                                                  ABSTRACT

 
     In the classical approach, cutting forces and cutting power in sawing processes of orthotropic 
materials such as wood are generally calculated on the basis of the specific cutting resistance kc (cutting 
force per unit area of cut). For every type of sawing kinematics (frame saws, band saws and circular 
sawing machines) different empirical values of specific cutting resistance kc have to be applied. It should 
be emphasised that sources in the scientific literature and handbooks do not provide any information 
about wood provenance, nor about cutting conditions in which cutting resistance had been determined. 
In analyses of sawing processes in which the offcut is formed by shear, Atkins’s ideas that all cutting 
forms a branch of elastoplastic fracture mechanics can be applied. Thanks to this modern approach it 
was possible to reveal, using experimental results data of fracture toughness and shear yield stresses of 
Polish pine (Pinus sylvestris), the significant effect of the raw material provenance (source of wood) on 
cutting power. In the common model for circular sawing machine kinematics, which is similar to metal 
milling, the sum of all uncut chip thicknesses of the all the teeth simultaneously engaged represented 
the mean uncut chip thickness. In this work predictions of the newly-developed model for the circular 
sawing machine are presented. In the model, beside uncut chip thicknesses changes, appropriate 
changes in shear yield stress and toughness with tooth/grain orientation have been taken into account. 
The conducted analyses have demonstrated that values of RMS of cutting power obtained with the new 
developed model are slightly larger than experimental values. On the other hand computed values of 
cutting power with the use of the mean uncut chip thicknesses in the model are a bit lower from the 
empirical one.

Keywords: Circular sawing machine, cutting, fracture mechanics, fracture toughness, modelling, 
orthotropic material, sawing process, wood.

INTRODUCTION

Theoretical and experimental determination of values of forces acting in the cutting process 
belongs to the fundamental and simultaneously the most explored field of mechanics of the machining 
process. The process of cutting is analyzed in fracture mechanics terms with a view to quantifying the 
various parameters involved. The governing parameters in the models (predominantly of orthogonal 
cutting) are tool geometry, which are principally the rake and wedge angles, geometry of the uncut 
chip (mainly its thickness), the machined material properties yield stress and fracture toughness, and 
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friction conditions between chip and rake surface (Atkins 2003, 2005, 2009, 2016, Williams et al. 
2010, Williams and Patel 2016, Wyeth and Atkins 2009, Wyeth et al. 2009).

Wood may be described as an orthotropic material; having unique and independent mechanical 
properties in the directions of three perpendicular axes: longitudinal, radial, and tangential. The 
longitudinal axis direction is parallel to the fibers course. The radial axis is normal to the growth rings, 
while the tangential axis is perpendicular to the grain but tangent to the growth rings (Kretschmann 
et al. 2010, Laternser et al. 2003, Porankiewicz and Goli 2014). These specific features might be 
taken into account in analyses of energetic effects thanks to building surface energy for separation 
(i.e. material’s fracture toughness) into the models for forecasting of energetic effects (cutting force or 
cutting power). In wood cutting processes it could be emphasised the use of some elements of fracture 
mechanics: in the calculation models of cutting forces developed by Laternser et al. (2003), analyses 
made by Merhar and Bučar (2012), theoretical and experimental studies of sawing of pine wood on 
sash gang saws by  Orlowski and Palubicki (2009), in theoretical and empirical studies of circular 
sawing by Hellström et al. (2013) and Kopecký et al. (2014), in experimental studies on formation of 
wood surfaces and chips by Marchal et al. (2009).

Otto and Parmigiani (2015) in discussion of their empirical results of the sawing process noticed 
that shear yield stresses and fracture toughness of the cut raw material could be useful for better 
explanation of some saw-chain cutting mechanics phenomena, in numerical simulation of orthogonal 
cutting problems Nairn (2015) described a method called the material point method. The latter has been 
applied for numerical modelling of orthogonal cutting of wood with a bench plane, in which both full 
chip formation and the crack growth were able to be simulated (Nairn 2016). Such simulations can be 
used to optimise woodworking with a bench plane.

The sawing process with circular saw blades experimentally has been investigated in the laboratory 
conditions Beljo-Lučić et al. (2004), in case of industrial conditions by Cristóvão et al. (2013), and for 
wood crosscutting process (Krilek et al. 2014).

The presented by Orlowski et al. (2013) analytical analyses of energetic effects with the use 
of cutting models that include work of separation in addition to plasticity and friction corroborated 
their versatility and revealed the usefulness for every known type of sawing kinematics. The same 
methodology was applied for forecasting of the capacity of every type of sawing machines (frame 
sawing machine, circular sawing machine and bandsawing machine), for the real sawing patterns used 
in the sawmill, in terms of available power, feed rates and so on, leading to comments on the design of 
machines with different kinematic features (Orlowski et al. 2014). In the common model for circular 
sawing machine kinematics, which is similar to metal milling, the sum of all uncut chip thicknesses 
of the all the teeth simultaneously engaged represented the mean uncut chip thickness (Orlowski 
et al. 2013, 2014). This work’s goal was to demonstrate predictions of the newly-developed model 
for the circular sawing machine tool. In the proposed model, beside uncut chip thicknesses changes, 
appropriate changes in shear yield stress and toughness with tooth/grain orientation have been taken 
into account.

THEORETICAL BACKGROUND

Making an assumption that cutting force Fc acting in the middle of the cutting edge is an equilibrium 
of forces related to the direction of primary motion for a single saw tooth the mechanical process of 
material separation from the sawn workpiece, i.e. chip formation, can be approximately described by 
the example of an orthogonal process (two dimensional deformation) (Orlowski et al. 2013).

In the case of circular sawing, identically as in analytical models for milling (Altintas 2000, Ammar 
et al. 2009, Budak 2006), the instantaneous uncut chip thickness hj(φ) at a certain location of the cutting 
edge (Figure 1) can be approximated as follows:

( ) jzj fh ϕϕ sin=                                                                   (1)
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where: fz is feed per tooth, jϕ  is the angular position of the j-th tooth (immersion angle), and its 
value changes as follows:

( ) Pj j ϕϕϕ 1−+=    zj ,...,1=                                                       (2)

Pϕ  is the pitch angle defined as 
zP
πϕ 2

= , and z is number of teeth.

If φ φ φen j ex≤ ≤ , then it has a value, otherwise it is null. φen  is an angle of teeth entrance which

 is given by                                                     (when the tool tooth gets into the workpiece for machining), 

and φex   is an exit angle (the tooth of the saw blade gets out of the workpiece) which can be determined 

as                                        , D is a diameter of the circular saw blade. In the case of cutting with circular saw

blades the cutting power a new developed macro-mechanic model (Orlowski and Ochrymiuk 2013), 
which is based on the model proposed initially in work by Orlowski et al. (2013), can be expressed as:
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In the above model (Eq. 3) it was assumed that the cutting edges of teeth are sharp. Moreover, if we 
assume the cut is straight, and the cut deviation is low; then we can ignore the effect of lateral forces on 
the power consumption (Mohammadpanah and Hutton 2016a).

In Eq. (3) )(_|| ϕτγ j⊥  is the shear yield stress, γj(φ) is the shear strain along the shear plane, which 
is given by:

( ) ( )( ) ( )jcfjc

f
j ϕγϕ

γ
ϕγ

Φ−Φ
=

sincos
cos

                                            (4)

βμ is friction angle which is given by tan-1μ = βμ, with μ the coefficient of friction, γf is the rake 
angle, Фc(φj) is the shear angle which defines the orientation of the shear plane with respect to cut 
surface, )(_|| ϕjR ⊥ is specific work of surface separation/formation (fracture toughness), and Qshear_j(φ) 
is the friction correction:

( ) ))])(cos()cos(/)(sin(sin[_ fjcfjcjshearQ γϕγβϕβϕ µµ −Φ−Φ−= 1                              (5)

For least cutting force Fc, the shear angle Фc(φj) (for indirect tooth position) satisfies (Atkins 2003):
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contrary to the classical approach by Merchant (Böllinghaus et al. 2009, Markopoulos 2013). Derivation 
of the formula (6) can be found in Appendix A.

Taking into account the position of the cutting edge in relation to the grains, for indirect positions of 
the cutting edge fracture toughness )(_|| ϕjR ⊥  and the shear yield stress )(_|| ϕτγ j⊥  may be calculated 
from formulae:

jjj RRR ϕϕϕ 22 sincos)( ||_|| ⊥⊥ +=  jjj ϕτϕτϕτ γγγ
22

||_|| sincos)( ⊥⊥ +=                               (7)

Accordingly to Orlicz (1988), who applied the plane stress transformation equation for 
determination of specific cutting resistance in indirect positions of the cutting speed direction, 
the same approach has been implemented for computation of the shear yield stress and 
fracture toughness as tensor values (Orlowski et al. 2013, Hlaskova et al. 2015). It ought to 
be emphasized that the same method is commonly used in general mechanics of materials to 
transform the stress components from one set of axes to another (Gere 2004).  

Maximum, average or RMS (root-mean square) values of power can be determined after one full 
revolution of the tool, i.e. φ: 0-360° is simulated (Budak 2006). Thus, the total cutting power can then 
be computed as:

P Pc cj
j

j z

( ) ( )φ φ=
=

=

∑
1

                                                                    (8)

The obtained values from the Eq. 8 could be augmented by the chip acceleration power Pac variation 
as a function of mass flow and tool velocity (Orlowski et al. 2013, Pantea 1999, Atkins 2009).

MATERIALS AND METHODS

Materials

Scots pine (Pinus sylvestris L.) samples (15 items) originating from the Forest Inspectorate Lipusz 
in the Baltic Natural Forest Region (PL) were used as experimental samples in the sawmill conditions. 
Samples were in the shape of rectangular blocks with dimensions of 100 mm (H) ´ 50 mm (W) ´ 2200 
mm (L) with moisture content MC 35%, density ρ = 509,2 kgm-3. The value of friction coefficient m 
= 0,6 for pine wood was taken according to Glass and Zelinka (2010). The shear yield stresses τγ, for 
perpendicular cutting and for longitudinal cutting, were as follows: τγ⊥  = 24,82 MPa and τγ|| = 18,40 MPa, 
and fracture toughness for the same directions were R⊥   = 1212,69 Jm-2 and R|| = 34,99 Jm-2. It should 
be emphasized that values of shear yield stresses and fracture toughness were obtained empirically in 
the cutting tests in the industrial conditions according to the methodology presented in the paper by 
Orlowski et al. (2015). Furthermore, cutting tests have been recommended for determination of the cut 
material properties as an alternative and effective way (Atkins 2005, Wang et al. 2013).
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Machine and tool data

The cutting experiment was carried out on the single shaft multi rip sawing machine PWR301 
(TOS Svitavy, CZ) at the Complex sawmill in Dziemiany (the Baltic Natural Forest Region, PL). In this 
type of the circular sawing machine, circular saw blades are clamped on the shaft with collars, on the 
contrary to the machines with guided spline circular saws which are often used in the North America 
(Mohammadpanah and Hutton 2016b). The machine settings were as follows: number of saw blades 
nb = 1, spindle rotational speed 3800 rpm, cutting speed vc = 69,64 ms-1, feed speed vf = 40 m×min-1, 
(feed per tooth 0,58 mm, average of uncut chip thickness h = 0,373 mm), clearance of a circular saw 
blade over the workpiece 5 mm, electric engine power PEM = 45 kW, cutting kinematics - up-sawing 
(conventional sawing). In those cutting conditions the uncut chip thickness starts at minimum and 
increases toward the end of the cut (Figure 1), it means that the feed direction of the workpiece is 
opposite to the rotation of circular saw blade (Figure 2).

Changes in current as a function of time during cutting and idling operations were measured with 
sampling frequency equal to 1 kHz. The details of the measurement system can be found in Appendix 
B. The cutting power was calculated as a difference of a total electric power PET and an electric idling 
power PEid. Since the measurements were carried out in one phase it was assumed that in other phases 
values of current have been the same. The real electric power can be calculated as (Engineering Tool 
Box 2014):

P U I PFE = ⋅ ⋅ ⋅3                                                                               (9)

where: U is voltage (V, U = 400 V), I is measured current (A), PF is power factor (PF = cosF). It 
was assumed that for the cutting process the value of PF = 0,8 and for idling PF was equal 0,3.

Figure 1. Sawing kinematics on circular sawing machine: Hp workpiece height (depth of cut), 
a position of the workpiece, φj angular tooth position, ФG–vc an angle between grains and the cutting 

speed direction, φen   an angle of teeth entrance, φex  an exit angle.
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Figure 2. Scheme of the kinematic system of the single shaft multi rip sawing machine PWR301.

One circular saw blade was applied with data as follows: 350 mm (D) × 80 mm (d) × 2,5 mm (s), 
overall set St = 3,9 mm number of carbide tipped teeth z = 18. The tooth geometry in the tool-in-hand 
system (Astakhov 2010) is shown in Figure 3, and the values of angles applied in the circular saw blade 
were as follows: the tool side flank αf = 12 º, the tool side rake γf = 25º, the tool back flank α’p1 = α’p2 
= 2º, tool cutting edge angle κr = 90°,  minor tool cutting edge angle κ’r1 = κ’r2 = 2°, the cutting edge 
inclination angle λs = 0°.

Figure 3. The circular saw blade tooth geometry in the tool-in-hand system: αf the tool side flank, 
α’p the tool back flank, κr tool cutting edge angle, κ’r minor tool cutting edge angle, γf the tool side 

rake, λs the cutting edge inclination angle.

Analysis of cutting power consumption

Predictions of cutting model that includes work of separation in addition to plasticity and friction 
in the case of sawing pine wood on examined circular sawing machine have been carried out with the 
model presented in this paper. Besides uncut chip thicknesses changes, appropriate changes in shear 
yield stress and toughness with tooth/grain orientation had been taken into account.
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Moreover, additional computations have been done for the model proposed in the work by 
Orlowski et al. (2013), in which the sum of all uncut chip thicknesses of the all the teeth simultaneously 
engaged represented the mean uncut chip thickness. In predictions the raw material data, computed 
with Equations (7), was as follows: shear yield stresses τγ||⊥ (ϕ  = 40,07°) = 23064099 Pa (for the tooth 
position at the average an angle of tooth contact with a workpiece ϕ , which was calculated from

 φ
φ φ

=
+en ex

2
), and fracture toughness R||⊥ (ϕ  = 40,07°) = 523 Jm-2. In this model the shear 

strain along the shear plane γ, the shear angle Фc, and the friction correction Qshear were also calculated 
for the average angle of tooth contact with a workpiece ϕ .

The both ploughing effect (Blackmann et al. 2013, Wang et al. 2013), and chip momentum were 
disregarded (Orlowski et al. 2013).

RESULTS AND DISCUSSION

 
Results of predictions of cutting power obtained with the use of a new developed cutting model that 
include work of separation in addition to plasticity and friction in the case of sawing of pine from the 
Forest Inspectorate Lipusz in the Baltic Natural Forest Region (PL) provenance with one circular saw 
blade, at the feed speed vf = 40 m·min-1, for one full revolution of the tool (the first one), are shown in 
Figure 4. In this computation beside uncut chip thicknesses changes, appropriate changes in shear yield 
stress and toughness with tooth/grain orientation had been taken into account. For a stable condition 
of cutting power changes in the new developed model (N_M) the RMS value was computed, which 
was equal to Pc(RMS_N_M) = 13774±147 W. Cutting power estimation can be found in Appendix C.

Figure 4. Predictions of cutting power obtained with the use of a new developed cutting model that 
include work of separation in addition to plasticity and friction for the circular sawing machine in the 

case of dry pine sawing with one circular saw blade.

In the model for circular sawing machine kinematics, presented in the paper by Orlowski et al. 
(2013), in which the sum of all uncut chip thicknesses of the all the teeth simultaneously engaged 
represented the mean uncut chip thickness, the predicted cutting power was equal to Pc(Av Thick) = 
13100±147 W.

The cutting power measured in sawmill conditions was equal to Pc(Exper) = 13563±45 W. Figure 
5 shows the comparison of cutting powers obtained: with the use of a new developed cutting model 
(N_M), in the experiment in sawmill conditions (Exper, an average value), and with a cutting model in 
which a mean value of uncut chip thicknesses is applied (AV Thick).
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Figure 5. Comparison of cutting power obtained: with the use of a new developed cutting model 
(N_M), in the experiment in sawmill conditions (Exper), and with a cutting model in which a mean 

value of uncut chip thicknesses is applied (AV Thick).

This comparison revealed that the value of cutting power for a new model (N_M) is larger than  the 
experimental one about 1,56% and the cutting power for the model (AV Thick) is lower about 3,41%. 
For the both models, differences in relation to the experimental values are rather small. Nevertheless, 
the presented model is time consuming: the computation time for one revolution of the circular saw 
blade takes about 1800 s, on the contrary for the cutting power model (AV Thick), which gives an 
insignificantly larger error of predictions, takes only 10 s. Hence, this new-developed cutting model 
could be recommended for forecasting changes of cutting forces in case of dynamical analyses and 
unsteady cases. Moreover, for predictions of cutting power for circular sawing process, the model that 
applied in a sum of mean value of uncut chip thicknesses is highly recommended.

CONCLUSIONS 

This paper shows that estimation of energetic effects using the newly-developed  cutting model 
that include work of separation in addition to plasticity and friction is capable of predictions not only 
average values of cutting power but also its dynamical changes. Furthermore, this approach extends 
opportunities to modeling of the cutting process of with circular saw blades. The conducted analyses 
have demonstrated that values of RMS of cutting power obtained with the new developed model are 
slightly larger than experimental values. On the other hand computed values of cutting power with the 
use of the mean uncut chip thicknesses in the model are a bit lower from the empirical one. Nevertheless, 
since the time consuming process of computation for industrial application this model should not be 
recommended. Moreover, it could be changed by application of the more power computer, or the use 
of highly optimized simulation code dedicated to the process control units. 
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Appendix A

According to (Atkins 2003) internal work is described by three parts: plasticity along shear plane 
(a), friction along the underside of the chip (b) and formation of new cut surface (c)

     
                                                                                                                                                      (A1)

From (A1) it can be obtained

                                                                                                                                          (A2)
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                                                                                                                                 (A3) 
 

Hence, the parameter Z makes Φc material dependent. According to the principle of minimum 
work, the work done in cutting should be at minimum, and thus its derivative should be zero, i.e.
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and  the cutting velocity  vc is not equal to zero, it follows from Eq. (A4) that 
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Substituting Eq. (A2) to Eq. (A5) we can obtain
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 Manipulating the trig function we obtain equation proposed in (Atkins 2003)

                                                                                                                                          
                                                                                                                                                  

 (A8)

Appendix B

Cutting power measurement system. The cutting power measurements were performed using a 
system consisting of a probe AC/DC current transducer DHR 100C10 (LEM USA Inc.), high-accuracy 
isothermal terminal block NI SCXI 1328 (National Instruments, USA), an 8-channel isolation amplifier 
NI SCXI 1125 (National Instruments, USA), 4-Slot Chassis NISCXI 1000DC (National Instruments, 
USA) and computer with the NI PCI 6281 card (National Instruments, USA).

Appendix C

Based on equation (3) the error of the cutting power could be expresses in the form
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Assuming average values depending on angular position variables in Eq. (C1), it can be obtained a 
value of the estimated cutting power error 147cP Wδ = .

  


