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EVALUATION OF THE CALORIFIC VALUES OF WASTES FROM 
SOME TROPICAL WOOD SPECIES

Aurel Lunguleasa1,♠, Cosmin Spirchez2, Octavia Zeleniuc3

ABSTRACT

The paper aims to analyze and classified some exotic wood species from tropical Africa, on regard to 
calorific features, in order to view the ability of their biomass to be a solid, natural and renewable fuel. The 
calorific values of wood wastes of eight tropical species were determined using an oxygen bomb calorim-
eter. The tested specimens were conditioned at a moisture content of 10%, 20%, and 50%. The influence 
of moisture content on calorific value and density, heat release rate and calorific efficiency were also ana-
lyzed. The biggest high calorific value and low calorific value were obtained by Guaiac and Rose species 
(21200-20700 kJ/kg). Acajou had the lowest values of high calorific value and low calorific value (18929 
and 18456 kJ/kg, respectively). For higher wood density (Guaiac) the higher calorific density was obtained. 
The moisture content of specimens had negatively influenced the calorific efficiency and rate of energy 
release. The ash content was below 4% with highest values for Guaiac (3,6%) and the lowest for Acajou 
(0,5%). The results showed that the analyzed tropical wood species had a forest calorific capacity with 23-
47% higher than of European beech, thus can be considered a good potential as renewable energy resources.

Keywords: Ash content, calorific value, calorific density, energy release, tropical specie, wood biomass.

INTRODUCTION

Wood biomass represents a great potential for the energy production and consumption all over of the 
world. There are many wood biomass sources (Adam et al. 2018, Barro et al. 2020, Ozyuguran et al. 2018, 
Perez-Arevalo and Velaszquez-Marti 2018), starting with forestry operations, forest residues, byproducts from 
wood processing, wood from demolition sites and even municipal wastes. The wood industry provides a wide 
range of wood wastes from primary processing of logs to veneers, plywood, panelboards, Oriented Strand 
Board (OSB), Medium Density Fiberboard (Adam et al. 2018) and furniture manufacturing. Wood and solid 
biomass accounted about 69% for all energy consumption on 2018 in Europe (AEBIOM 2019) as it can be 
seen in Figure 1. The interest in the use of the renewable energy has been growing fast in the last years, due 
to the problems of global warming and continued depletion of fossil fuels. Wooden biomass has also a great 
advantage because it can be used individually, or in combination with fossil coal (Adam et al. 2018).

Traditional biomass materials used for energy production include fuelwood, charcoal, and crop residues; 
these play an important role in many developing countries. In recent years, policies and programs have been de-
veloped to promote the use of renewable energy sources (AEBIOM 2019), the energy based on forest biomass 
being considered a reliable alternative. The potential to use the wood wastes from mills to produce electricity 
is significant. For instance 60% from electricity consumed in Gabon, 12% in Nigeria and 8% in Malaysia are 
obtained from wood waste (AEBIOM 2019). The volume of wood residues left from harvesting operations 
in tropical forests is three to six times that generated at mills. Tropical and sub-tropical species grows in zone 
with warm and moist climate, occupying 7% from global surface of globe, and 44% from the global forest area 
 

1Professor at Transilvania University of Brasov, Faculty of Wood Engineering, Brasov Romania.
2Assistant professor at Transilvania University of Brasov, Faculty of Wood Engineering, Brasov, Romania.
3Associate professor at Transilvania University of Brasov, Faculty of Wood Engineering, Brasov, Romania. 
♠Corresponding author: lunga@unitbv.ro
Received: 11.04.2018 Accepted: 20.02.2020

	



                Maderas. Ciencia y tecnología 22(3): 269 - 280, 2020

                                                                                                                

Universidad del Bío-Bío

270

(Jasinskas et al. 2020), being an important source of biomass. It is estimated that more than 40% of the oxygen 
produced in the world comes from these vegetal areas, which have undergone large-scale desertification in 
recent years, rapidly reducing this ecosystem around the world (Park et al. 2020, Adam et al. 2018).

Figure 1: Energy consumption from biomass and bio-waste in Europe (AEBIOM 2019).

 
       
Generally is estimated that the wood volume of these species is higher than the temperate species but the over-
all wood density is lower due to the growing conditions (high air temperature and relative humidity), especially 
soil humidity (Jasinskas et al. 2020, Park et al. 2020). The macroscopic structure shows the weak differences 
occurred in the growing areas during one year due to the rainy and dry season (Figure 2).

Figure 2: Macroscopic structure of tropical wood species: A-radial section; B-tangential section; C-cross 
section; 1-sapwood; 2-growth ring; 3-heartwood; 4-medullary stain; 5-pores.

Nowadays, the estimate number of tropical wood species including gymnosperms and angiosperms with 
diameters at breast height (dbh) ≥10 cm is around 50000 (AEBIOM 2019). They are spread in different tropical 
areas such as: South and Central America near the Amazon River, in Africa near the Congo River, South Asia 
in Peninsula Malacca, Malaysia, and the islands of Sonde, Sumatera, Java, Kalimantan, among others. Park 
et al.(2020), sustain that the fast-growing tropical species such as Eucalyptus species used to produce energy 
have a reduced life cycle up to 15-35 years. Only about 25-45 % of the harvested wood is considered good 
quality raw material for processing in timber, veneer, furniture, parquet, the difference being classified as wood 
residues (Park et al. 2020). A number of studies have been carried out on tropical wood biomass as potential 
source for energy. The possibility of using sawdust as domestic wood fuel and bio-oil production from six 
tropical wood species was evaluated by Numes et al. (2020). Other research (Acuña-Alegria et al. 2018) was 
done on a number of tropical wood species to investigate the combustion properties and pyrolysis products. 
The densification technology at room temperature using low compacting pressure (10 -50 MPa) was applied 
by Acuña-Alegria et al. (2018) to examine the density and compressive strength of fuel briquettes. The same 
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research indicated that the fuel properties of sawdust of tropical hardwood species could be significantly en-
hanced through the application of densification technology at room temperature (28 °C) using low compacting 
pressure.

Biomass combustion is a complex process defined by chemical reactions by which carbon is oxidized to 
carbon dioxide, and hydrogen is oxidized to water (Equation 1). Its performance depends on some biomass 
properties such as moisture content, ash content, volatile matter content, chemical composition, calorific value, 
bulk density, etc.

2 2 2( )x y zC H O O CO H O heat ash+ = + + +    (1)

The calorific value is one of the most important characteristics of a fuel and it is defined as the quantity 
of heat released during the complete combustion of unit mass of biomass. There are two types of calorific 
value i.e. high calorific value (HCV) or gross calorific value (GCV) which takes into account the latent heat 
of vaporization of water, which is not included in the low calorific value (LCV) or net calorific value (NCV). 
LCV at constant pressure is usually used in combustion calculus and its determination helps to evaluate the 
potential of fire generated and propagated (Tsai et al. 2020). The high calorific value (HCV) of combustion 
is obtained directly from a bomb calorimeter tests. The water vapors produced by oxidation of hydrogen are 
condensed and cooled to the temperature of the bomb releasing about 600 kcal for each kilogram of condensed 
water vapor, and usually are escaped as steam in the flue gases of stoves and furnaces. The calorific value is 
different for combustible materials depending on the fuel characteristics, and ranging between 8600 - 43962 
kJ/kg as can be seen in Figure 3.

 

 
Figure 3: Calorific value of some combustible materials (AEBIOM 2019).

The main objective of this paper was to evaluate the suitability of using biomass wastes from some trop-
ical wood species as solid fuel. The combustion parameters such as calorific value, calorific density, energy 
release rate, yield combustion and ash content were investigated. The comparative analyze of biomass calorific 
properties are performed to emphasize that tropical wood waste can successfully be used for renewable energy 
production replacing the traditional and pollutant coal.

MATERIALS AND METHODS

Raw material (tropical wood wastes)

Wastes such as log ends were provided by a veneer factory from Equatorial Africa (i.e. Angola): Aca-
jou (Swietenia mahagoni) Afromosia (Pericopsi selata), Abanos (Diospyros ebenum), Mansonia (Mansonia 
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altissima), Iroko (Chlorophora excelsa), Bose (Guarea cedrata), Rose tree (Rosa beggeriana), and Guaiac 
(Guaiaccum sanctum). The length of log ends varied from 15 to 25 cm with diameter ranging between 20-40 
cm.  

Sampling

The calorific parameters were evaluated on two types of specimens: 10 samples of chips/chops and sawdust 
less than 1 g obtained by splitting with circular machine of log ends; 20 pellets obtained from the sawdust re-
sulted at splitting of the log ends.

Ten specimens of 25x25 mm were used to determine the density according to EN 323 standard (Acuña-Ale-
gria et al. 2018). The specimens used for tests were conditioned until they reached an average moisture content 
of 10% for all wood species. Ten other samples (for moisture content influence on calorific value) were condi-
tioned in order to obtain 20% and 50% moisture content.

Calorific value

The calorific properties analysis included the determination of the following parameters: calorific value, 
calorific density, heat release rate, combustion yield, forestry calorific capacity and ash content. Determination 
of calorific value for wood and other lignocellulosic materials is similar to that of coal (as solid fuel) and is 
based on ASTM D3865-12 (2000) and/or DIN 51900-1 (2000). There are not significant differences when 
other types of fuels as petrol, gasoline, among others are tested. 

An oxygen bomb calorimeter (model XRY -1C Shanghai Changji Geological Instrument Co. Ltd., China) 
with explosive burning process in excess of oxygen at a pressure of 30 bars was used for the experimental tests. 
The principle operation of the calorimeter is based on measuring the heat released from the complete combus-
tion of a fuel in an oxygen environment (using the Regnault-Pfaundler method). The scheme of calorimeter 
bomb used in experimental tests is shown in Figure 4. Test contains three distinguished periods: fore, main and 
after, as can be seen in Figure 4b. In the same figure it can also see the temperature increase from beginning 
to the end of the test.

 
 

Figure 4: Scheme of calorimeter bomb: a-bomb; b- evolution of temperature inside the bomb calorimeter 
on each stage of combustion: 1 – main body of the bomb; 2 – cover lid; 3 –support; 4 – oxygen valve; 5 - 

exhaust gas valve; 6- electrode; 7 – connection tube; 8- rod; 9 – cap screw; 10-12 gaskets; 11-ignition wire; 
13-screen protector; 14-wood sample; 15-crucible.

The instrument was calibrated with 1g pill of benzoic acid (C6H5COOH) and determinate the calorimetric 
coefficient k (same as see in the Equation 2), knowing  the calorific value of benzoic acid of 26 463 kJ/kg (DIN 
51900-1 (2000)). 

( )
( / )f i sk t t q

CV MJ kg
m

⋅ − −
=     (2)
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Where: 

k is calorimeter constant (the calorimeter heat capacity), expressed in MJ/°C; tf, ti - the final and initial 
temperature, in °C; m - mass of sample, in g; qs- heat  released by cotton and nickel thread in MJ/kg.

Because the moisture content is one of the main factors that influence the calorific value, a dependence 
relationship for 0% and a certain Mc value (AEBIOM 2019) can be add (Equation 3):

(100 ) 2,44 ( / )
100

c c
Mc

CV M MNCV MJ kg− −
=    (3)

Where: CV- calorific value, for 0% moisture content, in MJ/kg; Mc -moisture content, in %.

Other calorific features

Based on of HCV and LCV obtained from calorimeter, the calorific value of the material for 0% moisture 
content and other properties such as calorific density, rate of energy release, energetically efficiency and forest 
calorific capacity were calculated using Equation 4, Equation 5, Equation 6, Equation 7, Equation 8 and Equa-
tion 9. There are two types of calorific density, related to the moisture content of analyzed samples. 

3
0 ( / )CD CVx MJ mρ=                (4)

3  ( / )MC MCCD LCV x MJ mρ=    (5)

Where: CD, CDMC – calorific density at oven drywood basis and different MC, respectively;  CV0= HCV0- 
high calorific value at oven dry basis (MC=0%); LCV- lower calorific value, MC- moisture content of wood 
samples, %; ρ0 , ρMC- density of sample at ovendry basis and different MC, kg/m3.

Rate of energy release was determined taking into account the calorific value (dry basis) and the sample 
combustion rate (depending on the mass sample and time of combustion), using the following Equation 6: 

0 ( / min)CVRER x m kJ
t

=   (6)

Where:

RER- rate of energy release (KJ/min); CV- calorific value, expressed on dry basis, KJ/kg; m0- oven dry 
mass of sample, g; t- the combustion time for each sample, min.

Because the usually MC was 10%, there were used a derivation equation to obtain oven dry mass of sam-
ples (m0) taking into consideration the mass at a certain moisture content MC (Equation 7):

0  100 ( )
100

MCmm x g
MC

=
+

    (7)

Calorific efficiency takes into consideration the influence of moisture content on the calorific value and 
was determined with Equation 8:

 100 (%)McLCV x
CV

η =         (8)
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Where:  LCVMc– low calorific value of samples at a certain moisture content, in kJ/kg; CV–high calorific 
value (dry basis) of samples, in kJ/kg;

Even if they are not fast-growing species in the true sense of the word, tropical species have a reduced life 
cycle of about 70-80 years; they can only be grown for fuel for only 30-40 years, like any energetically species 
(Salix viminalis, Mischantus gigantea, Populus euroamericana etc.). Therefore, the potential for expansion as 
bioenergy crops of tropical wood species was evaluated based on the forestry calorific capacity using Equation 
9:

  ( / / )FCC CV x FC MJ year ha=     (9)

Where: FCC-forest calorific capacity, in MJ/year/ha; CV-calorific value of oven dry wooden specie, in MJ/
kg; FC-forestry capacity, in t/ha· year. 

Ash content

In order to test the ash content, the fine sawdust, sort by the sieve of 1×1 mm, were used. Some chromi-
um-nickel crucibles were used for tests, with great resistance at high temperatures, clean, dried and burnt to the 
constant mass. The ash content of the samples was mainly determined based on ASTM D2866-11- 2011 (with 
small additions from ASTM D-1102-1984, ISO 1928-2009 and ASTM E1755-01 2003) as residue obtained 
after calcination of fine saw dust samples.1,5-2 grams of the fine sawdust from each tropical wood species were 
placed in crucible and were dried at 150 °C for 2 hours (EN 14774-1 2009). Then they were cooled in the des-
iccators to room temperature and were weighted determining thus the initial mass. The crucible is introduced 
inside a muffle furnace at a temperature of 650 ºC about 3 hours, enough for a complete calcination, visible by 
the absence of sparks in the burned ash sample (a mass difference of less than ± 0,5%), Then the crucibles was 
removed from the oven, cooled to room temperature in desiccators and weighed on a precision digital balance 
(accuracy 0,001g), resulting the final mass. The ash content was calculated based on the following Equation10.

 100 (%)si c
c

sf c

m mA x
m m

−
=

−
   (10)

Where: msi - the initial weight of oven dried sample with the crucible, in g; mc - the weight of empty cru-
cible, in g; msf - the final weight of incineration residue with the crucible, in g.

Data analysis

From each tropical wood species 10 replicates were made. All the values obtained were processed in Ex-
cel™ Microsoft in order to evaluate the differences between species, trend (arithmetic mean) and variations 
(standard deviation and limits) of the determined parameters. Only values whose limits were within ±5% of the 
central value were validated and taken into account in the statistical analysis. Also, only values whose variance 
coefficient R2 reached a value above 0,9 were validated.

RESULTS AND DISCUSSION

Results

About combustion parameters

The calorimeter given high calorific value and low calorific value of each sample. All values obtained for 
solid wood pieces were similar to those obtained for pellets of the same species. The average High and Low 
Calorific Values for all tested specimens, in ascending order, are shown in Figure 5. LCV values ranged from 
18456 up to 20720 kJ/kg. They were slightly lower than the HCV values which varied between 18929 and 
21221 kJ/kg (Figure 5). 
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Figure 5: Calorific value of some tropical wood species.

Then, on the base of physical properties (moisture content, mass and density) and calorific value, other 
combustion characteristics including the calorific density (CD), rate of energy release (RER), combustion 
yield/efficiency (η) and time of combustion of all species tested are presented in Table 1. In order to evaluate 
the influence of moisture content to HCV, samples from each tropical species were also conditioned in labora-
tory until they reached the moisture content of 10%, 20% and 50%.

Table 1: Other calorific features of some tropical species.

 

aEquation 4, Equation 5,bEquation 6,cEquation 8.

About moisture content influence on the calorific values (HCV and LCV)

The solid fuels contain some moisture as free water in large pores and bound water inside of cell wall. 
Solid wood fuel suppliers require average moisture content below 20% for firewood (Marafon et al. 2019, Yan 
et al. 2018) and 10-12% for other wood fuel products like pellets, briquettes, chips, sawdust, etc. 
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Figure 6: Correlation between the calorific value and the moisture content of two tropical wood species: 
a-Acajou, b-Guaiac.

The dependency of the calorific power on the sample moisture content was evaluated for the low and high 
calorific value obtained for Acajou and Guaiac, respectively (Figure 6). Two values of samples moisture con-
tent was considered (10% and 20 %) to obtain the lineal equations (Table 2), underlining the negative impact 
of moisture content on the combustion efficiency, particularly on the calorific values.

Table 2: Lineal equations of MC influence on calorific value.

 
        As it can be seen from Figure 6, the dependence of the calorific value to the initial moisture content of sam-
ples is linear and both HCV and LCV decreased drastically with increase in moisture content. The two linear 
equations could be used for HCV and LCV prediction based on the moisture content of wood fuel specimens, 
economical thermal calculations, and dimensioning of thermal installations. Intersection with horizontal axis 
determined the limitative MC.

Referring to other calorific features

The calorific density (CD) parameter is important knowing that from the denser wood, more heat per unit 
volume can be obtained at the same moisture content of sample. The values of this parameter ranged from the 
lowest in Acajou (9892 MJ/m3) to the highest in Guaiac (19090 MJ/m3). 

Rate of energy release (RER) differs from a species to another and help to use energy of combustion for 
stoves (with low rate) or for central heating (with rapidity of energy release). The rate of energy release varied 
between 3,85 x 10-4 MJ/min for Rose spp., and 5,15×10-4 MJ/min for Afromosia spp.

Forestry capacity differs from a forest stand to another, especially because of climacteric conditions. Inside 
of temperate conditions, the resinous and broad-leaved species has a medium forest capacity of 20 t/ha/year 
(9,6 m3/ha/year) dried wood (Ruiz Aquino et al. 2019).
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Referring to ash content

Ash content is an important parameter of fuel combustion and evaluation, in respect to its disposal and ef-
fect on equipment corrosion. Generally, ash content differs from bark to xylem, from juvenile to mature wood, 
among others (Gao et al. 2019) and is given by the secondary components from wood as oxides, carbonates, 
etc. Its values ranged from 3,6% (Guaiac spp.) down to 0,5% (Rose spp.), with small variation from a specie 
to another, similar with other values obtained by Gao et al. (2019).

Discussion

The tested species could be divided in 3 groups based on their calorific potential. Thus, in group A are 
included the species (Acajou, Afromosia, Abanos and Mansonia) with the lowest calorific values, between 
18400 KJ/kg and 19200 KJ/kg. Group B is represented by Iroko, and Bose species with medium calorific val-
ues 19500 KJ/kg and 21000 KJ/kg and finally the group C including Rose and Guaiac species with the highest 
values, around 21000 KJ/kg. The values obtained are comparable with those found by Acuña-Alegria et al. 
(2018) for Mexican tree species, which are within the range of 17,15 MJ/kg to 18,61 MJ/kg. 

The calorific values of European wood species were in a closer range with values from 18,11 MJ/kg (scot 
pine) to 19,86 MJ/kg (Silver fir) (Gao et al. 2019). It can be observed that the average calorific value was 
with about 11,6% (with a confidence interval of 95%) greater than those of European wood species. This can 
be attributed to the differences in chemical composition. The tropical wood species contain around 43,5% 
cellulose, 65,5% hemicellulose and 30,36% lignin, as reported by Acuña-Alegria et al. (2018). Their lignin 
content is considerably higher than of European trees with about 17,6% which have average cellulose content 
of 45%, 6% hemicellulose and 25% lignin (Asibor et al. 2019). The main elemental chemical components of 
tropical wood species (48,9% C (carbon), 6,8% H (hydrogen) and 44,3% O (oxygen) might have a positively 
contribution to the higher calorific value, with about 8,6% compared to European wood species (45% C, 6% H 
and 42% O). The variations of calorific values observed between species are due to the differences in carbon 
and extractives content especially with phenol compounds in their composition (Ruiz-Aquino et al. 2019). The 
tropical species as fuel are environmentally friendly alternative to coal, considering that some of them (catego-
ry B and C) had the calorific values close to that of the lower coal (Pit coal) (24284 kJ/kg).

It is observed that the higher wood density (e.g. Guaiac, with 1100 kg/m3) contributed to an increase of 
caloric density with about 92,9% compared to lower density species (Acajou and Abanos). The influence of 
MC on calorific density is complex demonstrated by the resulting polynomial functions of 4th degree with a 
correlation coefficient R2 over 0,9 (Figure 7). The results are comparable to the CD of temperate species bri-
quettes estimated at 9000-24000 MJ/m3 and that of torrefied wood biomass pellets generally about 19-22 MJ/
m3 (Asibor et al. 2019).

 
 

Figure 7:(a) Moisture content influence on calorific density and (b) Moisture content influence on calorific 
efficiency.

Combustion time and moisture content have influenced the rate of energy release, which increase with 
decrease in moisture content, due to the shorter time necessary for combustion of dried samples. Lower density 
and higher inner porosity could lead to a better air circulation in the combustion process increasing the RER, 
as Acajou spp. has of 4,1×10-4 MJ/min. This result agrees with values found by de Freitas Fialho et al. (2019) 
of 5,5-5,9 × 10-4 MJ/min in briquettes made of spruce and oak.
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The calorific yield starts from 100% for a moisture content of 0% for all tropical specie and decrease down 
to 50% for Mansonia or 48% for Afromosia spp., when moisture content is 50%. This calorific parameter var-
ied from 92% for Bose spp. down to 88% for Afromosia spp., at the same moisture content value of 10%.  As 
expected, it decreased dramatically below 45% with increase in moisture content over 50% as can be seen in 
Figure 7b.

Lower forest capacity/productivity was reported for oak, less than 3,5-7 t/ha/year (2,6-5,2 m3/ha/year) 
(Asibor et al. 2019). The tropical wood species can produce more wood per ha reaching 25-30 t/ha/year, thus 
resulting 5,3-6,3x105 MJ/ha for Afromosia and 4,7-5,6 x 105 MJ/ha for Acajou spp. The forest calorific capac-
ity of a tropical wood species is with 23-47% higher than of European beech (Fagus sylvatica) with 3,8 x 105 

MJ/ha, as other authors states before (Acuña-Alegria et al. 2018).

The values of ash are higher than of temperate wood species as 0,2-1,2% (Numes et al. 2020, de Freitas 
Fialho et al. 2019), but much lower than that of bark with 6-8% and vegetal waste with 14-18% (Gao et al. 
2019). As ONORM Austrian standard stated, the wood fuel may be considered inadequate when the ash con-
tent is above 6% (Acuña-Alegria et al. 2018). 

Figure 8: Influence of ash content on calorific value.

Some authors found some correlations between ash content and calorific value, usually negative (AE-
BIOM 2019). This influence for the studied tropical species is presented in Figure 8. It can observe a slight 
negative influence, but this cannot be validated because of very low correlation coefficient R2=0,314. 

CONCLUSIONS

Beyond the beautiful color and aesthetics of these tropical species that make them apt for veneering and 
lumber processing, the paper also highlights superior calorific characteristics. The main conclusions that may 
be drawn from this research on combustion of wastes from some studied tropical wood species are presented 
below:  

The tropical wood species are found to produce higher LCV and HCV (ranging from 18456-20720 kJ/kg 
and 18929 - 21075 kJ/kg, respectively) with 11% more than temperate wood species, due to their higher lignin 
content.

The most energetic species was found to be Rose spp. with a calorific value of 20566 kJ/kg and 0,5% ash 
content, followed by Iroko spp. which exhibit 19873 kJ/kg calorific value and 0,9 % ash content.

Moisture content had a significant effect on the combustion parameters, decreasing the calorific value and 
combustion yield with about 50% at MC greater than 40%.

The better ash content was found as 0,5% in Rose spp., with small variation between species. All values 
of ash content are convenient, lower than bark or vegetal wastes, which had a positive impact on their high 
calorific values and calorific yield /efficiency.

The calorific forest capacity of 4,7-5,6 x105 MJ/ha year for Acajou spp., is higher than for majority of 
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temperate species, including European beech (Fagus sylvatica).

The calorific characteristic of wastes from selected tropical wood species showed that they have good po-
tential as solid fuel, contributing to an efficient use of residues from furniture, veneers and timber processing. 
Therefore, it is recommended for the industry to use, besides sawmill or veneer factory, a line for collecting 
wastes and use them as fire wood or procesed by briquetting or pelletizing. In this way, the resulting remains 
would be judicious use.
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