
ISSN impresa 0717-3644 
ISSN online 0718-221X

                Maderas. Ciencia y tecnología 22(4): 425 - 438, 2020

       

                DOI: 10.4067/S0718-221X2020005000401 

425

VARIABILITY IN THE PHYSICO-CHEMICAL PROPERTIES OF 
WOOD FROM Eucalyptus robusta DEPENDING ON ECOLOGICAL 

GROWING CONDITIONS AND FORESTRY PRACTICES: THE 
CASE OF SMALLHOLDINGS IN THE HIGHLANDS OF  

MADAGASCAR

Zo Elia Mevanarivo1, Tahiana Ramananantoandro1, Mario Tomazello Filho2, Alfredo Napoli3,  
Andriambelo Radonirina Razafimahatratra1, Herintsitohaina Ramarson Razakamanarivo4,  

Gilles Chaix2,5,6,♠  

ABSTRACT

This study set out to determine which environmental factors of growth and silvicultural practices can affect 
the properties of Eucalyptus robusta coppice wood and also to study variability in those properties depending 
on the factors. Hundred and thirty-five coppice logs aged 2 to 10 years were collected from five zones in the 
Highlands of Madagascar. Wood density at 12% moisture content was measured by X-ray microdensitometry. 
Chemical properties, such as the total extractives, Klason lignin and holocellulose contents were predicted  
using near infrared spectrometry prediction models. The results significantly showed (p-value<0,001) that 
wood density (543 – 836 kg/m3), total extractives (3,1 – 9,8%) and Klason lignin content (24,6 – 35,3%) 
increased with age, with the opposite occurring for holocellulose (63,8 – 69,9%). Wood density also varied 
significantly (p-value<0,001) depending on the zones, which was not the case for chemical properties. The 
densest woods were found at the hottest zones with less acid soils. Woods were less dense in zones, charac-
terized by high rainfall and a soil rich in nitrogen and organic carbon. The plantation spacing, elevation of the 
zone and soil texture did not significantly affect wood properties. 
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INTRODUCTION

The fact that the genus Eucalyptus adapts to a broad range of environments offers  enormous possibilities 
for producing multi-purpose woods to meet increasing demands worldwide (Hein et al. 2012). This makes this 
genus one of the most widely grown in the tropical and subtropical regions of the world (Gion et al. 2011). Eu-
calyptus trees are also fast-growing and usually supply good quality wood and tree shape, which enables mul-
tiple uses. Density and chemical properties, such as Klason lignin, and holocellulose contents, along with total 
extractives, are important characteristics for assessing the quality of wood and informing on its potential uses 
(Malik and Abdelgadir 2015). According to Gonçalves et al. (2004), Thomas et al. (2007), Zobel and Buijtenen 
(2012), these properties vary depending on the growing environment and genetic factors. The environmental 
factors are particularly the annual mean temperature, annual mean rainfall, elevation, along with soil chemical 
properties and texture, plantation spacing, and rotation length (Cutter et al. 2007, Zobel and Buijtenen 2012). 

Wood density varies differently, depending on the regional climate and the species involved. In general, 
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woods are denser under growing conditions with higher temperatures and lower rainfall (Drew et al. 2017). 
Anatomically, the adaptation of a tree to climatic factors is reflected in variations in the size and frequency of 
vessels, and of fibre walls, which consequently affects wood density (Roderick and Berry 2001, Searson et al. 
2004). In addition, fast-growing trees,  such as E. urophylla x E. grandis hybrid,  produce wood with less lignin 
than slow-growing trees (Makouanzi et al. 2017). Wood lignin and cellulose contents are negatively correlated 
(Trugilho et al. 1996) and fast-growing trees are expected to produce wood with more cellulose. 

Wood properties are also affected by silvicultural practices (Gonçalves et al. 2004). A lower planting den-
sity reduces competition for light, nutrients and water, thereby affecting the volume and density of the wood 
produced. Likewise, soil fertilization affects vessel frequency and fibre wall thickness, hence wood density 
(Lima et al. 2010). In addition, the forestry regime governs wood properties. According to Zobel and Buijtenen 
(2012), the physico-chemical properties of woods of the same age do not usually display any large differences 
between coppice and/or high forest management. However, Zbonak et al. (2007) found that coppice wood 
is less dense than that produced from a high forest. Many studies have been carried out on eucalyptus cop-
picing, but mainly focusing on tree growth. Very few studies have analyzed  wood properties with this type 
of management (Zbonak et al. 2007, Zobel and Buijtenen 2012). More specifically for E. robusta, studies 
involving high forest wood have mainly focused on physical and mechanical properties (Carvalho et al. 2016,  
Jiofack-Tafokou 2008) and not on the physico-chemical properties of coppice wood, yet properties such as 
density greatly influence charcoal quality (Gough et al. 1989).

The genus Eucalyptus was introduced into Madagascar towards the end of the 19th century (Verhaegen et 
al. 2011). Eucalyptus trees then became the most widely used exotic species for reforestation in Madagascar 
and they can now be considered as naturalized. Plantations for timber or energy wood production, mostly euca-
lyptus and pine, meet the needs of the population. Eucalyptus plantations are estimated to occupy 235000 hect-
ares, and E. robusta is the most common species with around 147000 ha (Randrianjafy 1999, Verhaegen et al. 
2011). Although E. robusta has been tested in many tropical and subtropical countries, Madagascar is the only 
country in the world where it is the most widely planted tree species (Rakotomalala 2015). The plantations 
are found primarily in the Highlands in the middle of the island (Randrianjafy 1999, Razakamanarivo et al. 
2012). They mostly belong to smallholders (Ramamonjisoa 1999) and are managed as short-rotation (between 
2 and 5 years) coppices, without fertilization or any particular forestry cares (Razakamanarivo et al. 2012,  
Razakamanarivo et al. 2010, Rakotomalala 2015). Apart from  few studies on forestry management  
(Verhaegen et al. 2011), genetic improvement (Rakotomalala 2015), production in terms of wood volume 
and energy wood (Razafimahatratra et al. 2016, Razakamanarivo et al. 2012), the physical and mechanical 
properties of high forest woods (Rakotovao et al. 2012) and the impact of the stand on soil carbon stocks 
(Razakamanarivo et al. 2010), no study has investigated factors that influence the physico chemical properties 
of coppice woods. Yet, such knowledge is important for more effective management of E. robusta plantations 
in Madagascar to improve wood quality for various uses.

The purpose of the study was therefore to determine how environmental factors and forestry management 
methods affect the properties of E. robusta coppice wood in the Malagasy context. As the genetic diversity of 
E. robusta in Madagascar is very low (Verhaegen et al. 2011), we decided to focus on studying how different 
ecological growing conditions and cutting frequencies affect the properties of E. robusta wood. 

MATERIALS AND METHODS

Description of the study zones

Five zones in the area of distribution of E. robusta plantations were chosen for the study. They were locat-
ed in the Highlands of Madagascar (Figure 1). Three sites representative of the zones were selected for each 
of them.
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Figure 1: Location of the study zones.

Table 1 lists the characteristics of the study zones according to the environmental factors considered. The 
study zones differed in terms of elevation, climate and soil texture. Andasibe lies in a humid, lowland region. 
Anjozorobe, Fianarantsoa, Itasy and Manjakandriana lie in subhumid highland zones. The highest temperature 
was encountered at Fianarantsoa and the lowest at Manjakandriana. The soils in the 5 zones are somewhat 
clay-rich and vary in sand and silt rates.

Table 1: Characteristics of each study zone depending on environmental factors.

 
 

Sources: Meteorological service of the Madagascar Ministry of Transport and Meteorology (2007 - 2016).

The environmental factors considered here were elevation, climate (MAT and MAR) and soil properties. 
The silvicultural parameters were the forestry regime, rotation length and tree density in the plantations. 
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Soil sampling and analyses

Soil samples were taken at each site from a soil pit (30 cm*30 cm*70 cm), along with 3 auger samples tak-
en around it. The soil texture was determined by sedimentation granulometry using the pipette method (Rzasa 
and Owczarzak 2013). The finer particles (clay and fine silt) were quantified by decantation. The coarser par-
ticles (coarse silt, sand) were separated by dry screening. 

The pH was obtained using a solution with a soil/distilled water ratio of 1:2,5 (Conyers and Dav-
ey 1988)0.01 M CaCl2, and 0.1 M KCl, at dilution ratios 5:1, 2.5:1, and 2:1 solution: soil, were found to 
be highly correlated over a wide pH range. The regression equations, obtained on a small group of New 
South Wales soils under strict laboratory conditions, were similar to those reported in comparative stu-
dies from Britain (Davies 1971. Organic carbon was measured by the titration method (Walkley and Black 
1934) and total nitrogen was measured by quantification on a Kjeldahl continuous flow analyser (SKALAR)  
(Bradstreet 1954). Available phosphorus was quantified on a spectrophotocolorimeter (Olsen et al. 1954) and 
the cation exchange capacity (CEC) by cobaltihexamine extraction and quantification on an atomic absorption  
spectrometer (Ciesielski et al.1997).

Making test-pieces

Wood samples were collected from the different coppice-managed E. robusta smallholder plantations. For 
each site in each zone, the suckers were 2 to 10 years old. The age was determined by interviewing the manag-
ers. In all, 135 plants were sampled. The plantation spacing differed depending on the stands and the owners, 
varying from 4m * 4m, to 3m*3m and 3m* 2m. 

A stem without any apparent defects was cut from each stump. A log was cut from each stem 1,30 m above 
the stump. Two 1,5-cm disks were cut from each log. A diametral strip measuring 1 cm wide by 1,7 mm thick 
was made from one of the disks to assess wood density at a 12% moisture content. The second disk was ground 
to 4 mm to assess chemical properties (Figure 2).

Figure 2: Diagram of the sampling protocol for the characterization of E. robusta wood properties.

Wood property measurements

Density

The samples were placed in a climate chamber at 20°C and 65% moisture for 96 h up to stabilization at a 
theoretical 12% moisture content. The density (d12) of the samples was determined by X-ray microdensitome-
try on a specific QTRS-01X instrument controlled by QMS Tree Ring System software (Quintek Measurement 
Systems). For each wood sample, we obtained a density profile along the radius taking measurements every 
80 µm. 

Wood chemical properties

The chemical properties of the wood, such as extractives (EXT), Klason lignin (KL) and holocellulose 
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(HOLO) contents were predicted using existing prediction models and near infrared (NIR) spectroscopy spec-
tra measured on the wood samples from the study (Chaix 2012). As for the pre-established models, we used a 
Bruker Vector 22/N model spectrophotometer. The spectra were measured on the longitudinal surface of all the 
previously moisture-stabilized samples.

Statistical analyses

Statistical analyses were carried out with the Rstudio version of R software (R Core Team 2017). The re-
lations between environmental factors, silvicultural practices and wood properties were determined with Pear-
son’s coefficient. Some Y=aX+b type linear models were established to show relations between the variables. 
Variance analyses were used to investigate how the studied factors affected wood properties. The Tukey test 
was used to determine groups with significant differences at the 5% limit depending on the factors analysed. 

RESULTS AND DISCUSSION

Description of wood physico-chemical properties per study zone

The descriptive data for the 12% density and chemical properties of the wood per study zone are presented 
in Figure 3. 

Figure 3: Variability in wood density and chemical properties between and within regions: (a) wood density 
according to regions, (b) total extractives content according to regions, (c): Klason lignin content according 

to regions, (d) holocellulose content according to regions.

Density varied from 543 to 836 kg/m3 and differed significantly between the regions (p-value<0,001). Two 
groups stood out, with Manjakandriana, Andasibe and Anjozorobe in the first, and Fianarantsoa and Itasy in 
the second. Based on the factors characterizing the regions, we found no explanation for the formation of these 
two groups. For example, the Fianarantsoa region was the driest, while the Itasy region was among the wettest.

The extractives, Klason lignin and holocellulose rates varied from 3,1 to 9,8%, 24,6 to 35,3% and 63,8 to 
69,9% respectively, but did not differ significantly between the regions (p-value>0,05). These results might be 
explained by the effects of the different ecological growing factors characterizing each zone, and especially 
their interactions. 
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Relations between wood properties, silvicultural practices and environmental factors

The correlations between silvicultural practices, environmental factors and wood properties are described 
in Table 2. 

Table 2: Coefficient of correlation between wood properties and the variables representing silvicultural  
practices and environmental factors.

 

*: significant at 5% limit, **: significant at 1% limit, ***: significant at 0,1% limit.

An analysis of the correlations showed that, out of the factors studied, wood age, MAR and MAT, along 
with soil chemical properties, such as pH, nitrogen and organic carbon contents, were related to wood density. 
Only wood age was related to both d12 and the EXT, KL and HOLO contents and therefore appeared to be 
the most important factor. However, the tree density per hectare, elevation and certain soil properties, such as 
phosphorus content, cation exchange capacity and texture, did not affect wood physico-chemical properties. 

Tree density per hectare had more of an influence on biomass production (Gonçalves et al. 2004). DeBell et al. 
(2001) showed for E. saligna that a wide spacing (4m * 4m) between trees significantly increased tree diame-
ter, not wood density. Bravo et al. (2012) also showed for E. nitens that tree spacing as a result of thinning does 
not affect wood density but tree diameter. Likewise, soil texture governed root development and soil drainage 
rather than affecting wood properties (Gonçalves et al. 2004). In addition, according to Drew et al. (2017), 
variability in wood properties depending on elevation is often associated with the effects of a temperature 
change. Our results were along the same lines as regards the effect of the mean annual temperature on wood 
density. 

Environmental effect on wood density

Climate effect on wood density

Figure 4 shows the relation between climate and wood density.
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Figure 4: Effect of temperature and rainfall on wood density at the 15 sites considered in Madagascar: (a) 
wood density depending on the mean annual temperature of the study zones, (b) wood density depending on 

the mean annual rainfall of the study zones.

Wood density presents some significant differences depending on MAT and MAR (p-value<0,001). It was 
positively correlated with MAT and negatively with MAR. In general for eucalyptus wood, wood density has 
been found to be positively correlated with the temperature of the study zone (Drew et al. 2017, Thomas et 
al. 2007). Muneri et al. (2007) obtained the same result with E. dunnii wood, as did Thomas et al. (2007) for 
E. camaldulensis. Temperature affects cambial activity, and thereby the thickness of fibre cell walls and the 
number and distribution of vessels (Roderick and Berry 2001), hence wood density. A denser wood has fibres 
with thicker fibre walls, smaller vessels and a lower vessel frequency (Malan 1995). These changes correspond 
to the adaptation of the tree to heat and water stress. In some warmer regions sap viscosity decreases, making 
it more fluid (Roderick and Berry 2001). Smaller, or less numerous vessels are better adapted to transporting 
sap to leaves at higher temperatures (Thomas et al. 2007). 

As has been presented in the literature, the density of E. robusta wood decreases when rainfall increases. 
Generally speaking, wood produced under water stress is denser (Drew et al. 2017). Downes et al. (2006), 
Downes et al. (2014) showed that the wood of E. globulus increases in response to reduced water availability. 
Searson et al. (2004) found similar results with E. grandis, E. sideroxylon and E. occidentalis, as did Downes 
et al. (2006) for E. nitens. Smaller vessels with thicker cell walls are more appropriate for adapting to water 
stress and resisting embolism risks, and they lead to a higher wood density (Searson et al. 2004). It therefore 
seems that wood from coppices react in the same way as wood from high forest. 

Effect of soil chemical characteristics on wood density

Figure 5 shows the relation between certain soil chemical characteristics (pH, organic carbon and nitrogen) 
and wood density. 
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Figure 5: Effects of soil chemical components on wood density for the sites considered in Madagascar: (a) 
Correlation between wood density and soil pH, (b) Correlation between wood density and soil organic car-

bon content, (c) Correlation between wood density at 12% moisture content and soil nitrogen content.

Wood density was significantly correlated with the soil pH, nitrogen content (N) and organic carbon con-
tent (C). The correlation was positive for pH and negative for the C and N contents. Soil fertility could have 
an effect on vessel frequency as Lima et al. (2010) showed. Thus, the density of hardwood trees is generally 
lower on more fertile soils, which are conducive to faster tree growth (Cutter et al. 2007). Naidoo et al. (2007) 
showed for E. grandis that wood density decreases when the soil organic carbon content increases. This leads 
to an increase in the percentage of wood vessels with thinner fibre walls on an organic carbon-rich soil. Indeed, 
the soil’s water-holding capacity increases significantly with the quantity of organic carbon in the soil (Rawls 
et al. 2003)we used the U.S. National Soil Characterization database and the database from pilot studies on soil 
quality as affected by long-term management. Regression trees and group method of data handling (GMDH. 
This reflects the influence of water availability on wood density (Figure 4b).

Some authors found different results for how nitrogen applications affect wood properties. DeBell et al. 
(2001), Downes et al. (2014) showed that nitrogen did not have any effect on the wood density of E. saligna, E. 
globulus and E. grandis. Raymond and Muneri (2000) showed that the effect of nitrogen on the wood density 
of E. globulus varied depending on the site. They also found that the wood density of E. globulus was lower 
on a soil fertilized with nitrogen and phosphorus. Eufrade-Junior et al. (2017) showed for E. urophylla x E. 
grandis hybrids that wood density increases in response to enhanced nitrogen intake associated with phospho-
rus and potassium. Thus, the tendency of wood density in relation to soil nitrogen might vary according to 
the amount applied and depending on the nutrients present or applied with the nitrogen, on the species and on 
silvicultural practices. 

Variability in pH depends on the chemical composition of the soil; a high nitrogen content corresponds to 
a more acid soil. According to Figure 5c, wood density decreases as the nitrogen content increases. Thus, the 
less acid the soil is, the higher the wood density will be for E. robusta.

Effect of coppice rotation age on wood properties

Figure 6 shows the effect of the rotation length, hence wood age, on the density of E. robusta wood and its 
chemical properties depending on the study zones.
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Figure 6: Correlation between the age and properties of E. robusta wood: (a) correlation between age and 
density, (b) correlation between age and extractives content, (c) correlation between age and lignin content, 

(d) correlation between age and holocellulose content.

Wood density displayed significant differences (p-value<0,001) depending on the sites and was positively 
correlated with wood age. E. robusta wood became denser with age for all the study zones. Several authors 
have shown identical results on some eucalyptus species: E. saligna from 12 to 48 months (Trugilho et al. 
1996), E. grandis from 2 to 6 years (Sette Jr et al. 2012) and E. urophylla x E. grandis clones from 3 to 7 years 
(Castro et al. 2016). This tendency would appear to come from changes in the cambial meristem and from 
physiological and mechanical demands resulting from the tree development process (Sette Jr et al. 2012). It is 
reflected in the thickening of fibre walls, notably for mechanical aspects, and a reduction in vessel size (Sette 
Jr et al. 2012) to avoid cavitation, as the distance covered by the sap from roots to leaves is greater.

The total extractives content of wood is positively correlated with age. Severo et al. (2006) found that the 
total extractives content of E. citriodora wood tended to be lower in young woods, due to the larger quantity 
of juvenile wood. One of the characteristics of juvenile woods is their low extractives content as they are still 
lacking heartwood (Koga 1988). Santana et al. (2012) showed similar results on E. grandis x E. urophylla 
clones, as did Wehr (1991), during a study on E. grandis woods of different ages. The increase in the ex-
tractives content in older woods is linked to the wood maturing process, more particularly to duraminization. 
Extractives, particularly polyphénols, are released during the transition from juvenile wood to mature wood 
(Trugilho et al. 1996).

Klason lignin and holocellulose contents are highly variable depending on the species, the cell layers and 
even between the different layers of the wall of the same cell. In our study, they were negatively correlated 
(r=-0,81) with each other: the lignin content increased with age and the opposite was the case for holocellulose. 
Protásio et al. (2014) showed the same tendencies on four eucalyptus clones (57 and 69 months old). Hsing et 
al. (2016) showed that the lignin and holocellulose contents of some E. grandis x E. urophylla clones did not 
have any clearly defined tendency linked to age. However, Trugilho et al. (1996) showed for E. saligna that 
lignin content tended to decrease with age up to 4 years. This was because younger trees tend to have a larger 
proportion of juvenile wood, which is richer in lignin than mature wood (Koga 1988, Trugilho et al. 1996). 
According to Jankowsky (1979), the juvenile wood period varies depending on the species. It can extend up to 
20 years for certain eucalyptus species (Jankowsky 1979). Koga (1988) showed that a trunk can be formed of 
85% juvenile wood at 15 years old, whereas it is 10% at 30 years old. The tendency of the lignin content in our 
study could therefore be explained by the fact that the samples considered mostly consisted of juvenile wood 
and were therefore richer in lignin. 

Consequence of rotation age for production in terms of merchantable wood volume, its density and 
soil properties

Until now, the optimum E. robusta coppice cutting age in Madagascar has been determined based on the 
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volume of wood produced. Randrianjafy and Deleporte (1995) drew up production tables and proposed opti-
mum ages per site. Yet, it would be interesting to determine the optimum E. robusta coppice cutting age taking 
into account both the increase in wood volume and the variation in basic wood density (Figure 7).

Figure 7: Variability of E. robusta wood density and its production in terms of merchantable volume over 
bark according to age and for an average fertility class (according to Randrianjafy and Deleporte 1995). AAI: 
(average annual increment in volume): average annual increment in merchantable volume over bark in m3:ha, 
since planting. CAI: (current annual increment in volume): current annual increase in merchantable volume 

over bark in m3:ha; it is the volume produced over a short period (1 year).

For an average fertility class, the current annual increment curve for the merchantable volume of wood per 
hectare increased up to 5-6 years, decreasing thereafter. The curve for the average increment in merchantable 
volume of wood per hectare displayed peaks at around 8-9 years. The two curves crossed over in the 11th year, 
which therefore corresponds to the optimum cutting age for the volume of wood produced. Considering that 
wood density increases with age, the proposal to cut at 11 years is coherent. Nevertheless, in order to take 
into account socio-economic aspects whereby E. robusta wood is in great demand and the owners often have 
money problems that prevent them from waiting for a long rotation, the average rotation recommended for E. 
robusta cutting in Madagascar is, in fact, 7 years (Ramamonjisoa 1999). At that age, wood density is around 
694 kg/m3.

In addition, the rotation age of eucalyptus coppices affects soil physical and chemical properties. The 
nutrients involved are primarily organic carbon, total nitrogen, exchangeable calcium, exchangeable mag-
nesium and the cationic exchange capacity of the soil (Zhao et al. 2014). These nutrients are essential for 
sucker growth. For instance, the nutrient content of soil decreases after each cutting operation, through exports 
resulting from coppice logging. Consequently, the more frequent the cutting operations, the more the soil be-
comes impoverished, leading to weaker sucker growth. In addition, for E. robusta in Madagascar, soils are not  
fertilized between cutting operations. The situation is worsened through the collection of E. robusta coppice 
litter for local domestic energy requirements and fertilizing crop fields. 

It can therefore be concluded that the tendency in Madagascar to shorten the coppice rotation age by up to 
2-3 years affects not only wood properties, but also those of the soil. The wood produced is less dense, thereby 
reducing its qualities for use as timber, or for energy purposes. In addition, this type of management reduces 
soil fertility and, thereby, coppice productivity. 
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CONCLUSIONS

E. robusta plantations in Madagascar produce denser wood in the hotter regions and on less acid soils. 
Conversely, wood density is low in wetter zones with soils richer in nitrogen and carbon. Thus, the condi-
tions at Fianarantsoa and Itasy are more suitable for denser wood production, unlike at Manjakandriana and  
Andasibe. The plantation spacing, elevation of the zone and soil texture do not affect the physico-chemical 
properties of wood from E. robusta trees planted in the Highlands of Madagascar.

The age of wood is the only factor affecting the most important aspects of its chemical composition. The 
oldest woods have higher extractives and lignin contents, with the opposite being the case for holocellulose. 
Given the increase in wood volume and its properties required for use as timber or energy wood, the recom-
mended cutting age for E. robusta coppices in Madagascar is 7 years old. The current tendency to shorten the 
coppice rotation length by up to 2 years, and the increase in cutting frequency, have a negative effect not only 
on the physico-chemical properties of the wood, but also on soil fertility.

A further study is needed to investigate how these silvicultural practices affect the quality and yield of 
charcoal depending on the physico-chemical properties of the wood. These results provide some important 
information for greater optimization of production in Madagascar E. robusta plantations.
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