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IMPREGNABLE AND REFRACTORY CONIFEROUS WOOD  

SPECIES TREATED WITH COMMERCIAL BIO-BASED EMULSION 
GEL FORMULATIONS
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ABSTRACT

Even in dry state, wood can be prone to biological degradation. Preservation is a prerequisite to confer pro-
tection and durability to wood. This is conventionally achieved by impregnating the wood with pesticides. A 
key point in these treatments is the complex process of wood penetrability. We focused on the relation between 
the penetration of wood preservatives, wood microstructure, and the physical characteristics of formulations in 
the impregnation of the easily impregnable pine (Pinus sylvestris), and the refractory spruce (Picea abies). In 
this work, specimens from the two species were impregnated with three types of commercial bio-based emul-
sion gels formulations containing insecticides and fungicides. The effect of treatment method using dipping, 
surface spraying, and vacuum-impregnation, on the retention of the active agents was analyzed. Visual assess-
ment, and qualitative and quantitative analyses of cypermethrin, permethrin and  propiconazole by gas liquid 
chromatography coupled to mass spectroscopy showed enhanced penetration of the active agents, and revealed 
differences of penetration performance of each agent. The suitable combinations of solvents and surfactants 
used in the bio-based formulations enabled rapid wood penetration and high yields retention. The capacity of 
penetration and retention of our gel formulations is discussed in terms of the connectivity of the conducting 
cells network of the two wood species.

Keywords:  Emulsion gels formulations, fungicides, impregnation, insecticides, Picea abies, Pinus  
sylvestris, wood microstructure, wood preservatives.

INTRODUCTION

As a natural material, wood is degradable under the action of microorganisms, insects, and natural borers. 
Protect wood from microbial attack is a prerequisite to achieve adequate performance and durability, particu-
larly in exterior applications or furniture making (Richardson 1993). Penetration of agents is the key impreg-
nation. Several factors affect the efficacy of the treatments such as the impregnable or refractory nature of the 
wood species, the characteristics of the pesticide formulation, the processes of liquid transportation in wood 
cells and the type of technology implemented (Evans 2003). The main types of treatment technologies include 
surface coating such as dipping, spraying, brushing, or vacuum-impregnation, the latter being particularly used 
for refractory species, and even by incision. Preservative penetrations (Civardi et al. 2015) depends on the 
solvent type  such as water-based or organic solvent-based solutions and or suspensions, supercritical carbon 
dioxide (Kang et al. 2005), hydrogel formulations (Obounou Akong et al. 2013), emulsions (macro-, micro- 
and nano-) (Du et al. 2016), as well as on the polarity of the active agents (Zhang et al. 2006). Researchers have 
long tried to establish a relation between penetrability of liquids and wood anatomical structure (Wardrop and 
Davies 1961, Koran 1989, Olsson et al. 2001, Hass et al. 2009). For example, hardwoods and softwoods ex-
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hibit different susceptibilities to liquid penetrability and absorption (Comstock and Côté 1968, Lehringer et al. 
2009a, Lehringer et al. 2009b). Moreover, differences occur within softwood species leading to classification 
in easily penetrable and refractory species (EN 350 2016). The relative proportion and distribution of sapwood 
vs heartwood been suggested to account for the respective penetrability of these two wood species (Rhatigan 
et al. 2004, Zlahtic 2017). However, the relation between penetrability and wood anatomical microstructure is 
still largely unexplained.

The objective of the present study was to investigate the respective behavior of the non-refractory pine 
wood  (Pinus sylvestris) and the refractory spruce wood (Picea abies) impregnated  by three types of commer-
cial preservative formulations, and to evaluate the performance of microemulsion gel formulations on the two 
softwood species. These aqueous formulations with low toxicity, non-volatile, odorless, and hypoallergenic 
(Griggs et al. 2017, Teng et al. 2018), were under the form of a bio-based isoparaffinic microemulsion gels. In 
this type of aqueous gel formulation, the olefin component plays a decisive role in the diffusion penetration of 
the active agents. In this study, the depth of penetration and extent of uptake and retention of the active agents 
were evaluated as a function of three modes of application and conditions, namely, dipping, surface spraying, 
and vacuum-impregnation. The capacity of penetration and diffusion of the pyrethroids cypermethrin, and 
permethrin relative to propiconazole, were evaluated.

The impact of emulsion gels formulations on the performance of the treatments was quantified. Such 
data should contribute to the basic understanding of the susceptibility of different wood species to pesticide 
applications and show the interests of emulsion gel formulations in improving wood preservation treatments.

MATERIALS AND METHODS 

Wood materials and specimen preparation

Sapwood of the easily impregnable pine (P. sylvestris), and a predominant heartwood to sapwood mixture 
of the refractory spruce (P. abies) were used. Spruce contained sapwood/heartwood ratios of 50/50, 60/40 and 
20/80. All specimens were prepared from planks cut longitudinally, 10 specimens of pine and 12 of spruce, all 
taken from different wooden blocks. They measured 480 mm x 200 mm x 50 mm, and 150 mm x 60 mm x 15 
mm (longitudinal × radial × tangential) (Figure 1). 

Figure 1: Preparation of specimens for assessing penetration, and for monitoring quantitative distribution of 
propiconazole and permethrin. (a) General dimensions of specimens for assessment of penetration 48 cm x 

20 cm x 5 cm; half specimen A will be used for qualitative analysis and half specimen B, for quantitative; (b) 
mode of sampling for analyses of liquid bio-based micro-emulsion (cypermethrin) treated samples; (c) - (f) 
sampling for qualitative and quantitative analyses of pine sapwood (c-d) and spruce (e-f) : the yellow lines 

show the 2 mm thick sampling at a distance of 3 cm for pine (c), and 1 and 2 cm for spruce (e), respectively. 
The black rectangles represent the sampling on a thickness of 3 cm in pine (d) and 1 cm and 2 cm in spruce 

(f) used for quantitative evaluation.
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To evaluate the effect of thickness on the impregnation, specimens of 40 mm and 60 mm in thickness were 
prepared (Table 1).

The specimens were conditioned in a climate chamber at 20 °C and 65 % relative humidity (RH) for 
7 days prior to testing. Measurement of humidity and density was done on 8 cm samples before impregna-
tion. Impregnation was performed by different application processes: dipping, spraying and vacuum-pressure. 
Spraying was applied on one or two faces of specimens and the quantity of product absorbed was estimated 
by weighing before and after spraying treatment. They were stored at 20 °C and 65 % RH for 7 days after 
treatment. Net solution absorption was determined by weighing before and after impregnation. Macroscopic  
penetration was evaluated visually on samples cut transversally from the specimens at 8 cm from the extrem-
ities. Transverse sections from the treated specimens were photographed to enhance delineation of the pene-
tration. For biochemical analyses, the specimens were stored for 21 days at 20 °C and 65 % RH, and humidity 
and density measured before quantitative and qualitative analyses. Ten specimens of spruce and 8 of pine 
were analyzed. Two specimens of both wood species sprayed on their two faces were cut lengthwise and the  
analyses performed each half-specimen, so as to monitor active agents retention according to penetration 
depth.  

Preservative treatments

Three commercial formulations were used: formulation XILIX®  LabF2018_008 from Adkalis, Blanque-
fort (France) (Messaoudi et al. 2018) : a biodegradable (Mohamad-Shahimin and Siddique 2017) emulsion-gel 
consisting of synthetic hydrocarbon iso-paraffinic, co-solvent plus water and  a cellulose ether thickener (c.a 
., 1%), and active agents (c.a., 2 %). (E.U norm NF EN 16640-2017 and International Norm ASTM D6866-
2020). The active agents were the fungicide propiconazole (1,2 %, w/w) and the insecticide permethrin (0,5 
%, w/w). The second commercial formulation was AXIL®  LAB2013_131 (European class 1 for outdoor and 
hazards uses in wetting conditions above ground) from Adkalis (over 60 % bio-based) liquid microemulsion at 
8 % cypermethrin plus 9 % fungicide agents, used here at a 4 % dilution rate (w/v) in water. The third formu-
lation was the gel XILIX® LabF2018_009®, containing insecticide plus fungicide (ca. 2,4 %). 

The uptake of the preservative emulsion gel formulations in pine and spruce wood was measured under 
three different treatment modes, as shown in Table 1.  Surface spraying was implemented with the XILIX® 

formulations. The gel was applied at a pressure of 20 to 40 bars. The amount of gel deposited was 400 g/m2 to 

450 g/m2, as determined by weight variation before and after spraying. In the vacuum-impregnation process, 
the specimens were treated in an autoclave (T&G Distribution, bvba) where they were impregnated with the 
desired formulation, and subjected to the following cycle: initial vacuum of 0,02 MPa for 20 min, followed by 
filling the chamber with the formulation product (600 L). Pressure was adjusted to 1,2 MPa maintained for 70 
min, followed by evacuation then under vacuum of 0,02 MPa for 25 min, and draining of the autoclave. The 
specimens were then dried in the air.

Monitoring propiconazole, permethrin and cypermethrin distribution by qualitative and  
quantitative analyses

Visual control of the extent of penetration of the formulations in the samples (20 cm x 8 cm x 5 cm) was 
underscored by photography. Identification and quantification of the active agents was carried out with a Ther-
mo Scientific Trace 1310 gas-chromatograph apparatus coupled to an ISQ mass spectrometer. The GC was 
equipped with a Restek capillary column (Rxi-5 ms, 30 m x 0,25 mm x 0,25 µm) connected to the XCALIBUR 
software. Reference standard solutions (10 mg/10 ml hexane) of propiconazole (Sigma-Aldrich 45642), per-
methrin (Sigma-Aldich 45614), and cypermethrin (Supelco 36128), were used with deltamethrin (Sigma-Al-
drich 45423) as the internal standard. 

Specific distribution of the amount of propiconazole and of permethrin was estimated by GC-MS on 
specimens of 48 cm x 20 cm x 5 cm that had been stored for 7 days at 20° C and 65 % RH following spraying 
treatment. The specimens were then stored again for a period of 21 days at 20° C and 65 % RH before analysis 
of the amounts of propiconazole and permethrin, or cypermethrin, respectively. The retention of product was 
quantified and the repartition of product according to depth was determined on sections of 3 mm cut at increas-
ing distances from the surface of the specimens (Table 2).  Samplings were from 10 specimens of spruce and 
8 specimens of pine. For GC-MS analyses, planing shavings were ground in a grinder. To 5 g ground aliquots 
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100ml acetonitrile were added and extraction carried out in the automated Thermo Scientific Dionex ASE 350 
system followed by sonication for 60 min. After filtration, and evaporation in a rotary evaporator, the dry ex-
tract was taken up in isohexane (2 ml), and 100 µl of internal standard (deltamethrin 0,1 mg/ 1ml isohexane) 
was added to 1 ml of isohexane extract.  Determination was done on slices of 2 mm taken at 3 cm from the 
surface on pine, and only at 1 cm and 2 cm on spruce since the penetration was limited in the latter (Figure 1c, 
Figure 1d, Figure 1e, Figure 1f).

RESULTS AND DISCUSSION 

Uptake and retention

As expected, among the three technologies of impregnation implemented, vacuum-impregnation gave the 
highest average uptake in both pine (around 55 % vs around 7 % with the other processes) and spruce (around 
40 % vs around 6 % with the other processes). Mode of application of formulations clearly affected the yield 
of retention in both pine wood and spruce wood (Table 1). Indeed, dipping is a non-pressure process in which 
the six faces of the rectangular specimens are submerged. In this process, the liquid is absorbed into the porous 
wood under capillary forces that depend on surface tension, and intermolecular forces between the liquid and 
the surrounding wood surfaces. As a result, the liquid diffuses spontaneously into the solid at a rate which de-
creases over time by passive diffusion. On the other hand, spraying with the gel (XILIX® LabF2018_009®) is a 
process in which the delivery of the formulation as a jet entails a force impact, in kgp/cm2, (Haller et al. 2002) 
that enhances penetration and retention. The interest of the present gel in this mode of application resides in 
the fact that it has a high surface tension in the range of 24 mN/m to 27 mN/m (norm EN NF 14370 (2004)) 
and a thixotropic viscosity. The percentage of uptake when surface application was applied was about double 
to three times higher by spraying than by dipping. 

Table 1: Uptake and retention of active product in pine (P. sylvestris) and spruce (P. abies) wood according 
to the mode of application.

All the specimens of P. sylvestris were sapwood; specimens of P. abies were mostly heartwood.

Specimen dimensions: Dipping and spraying 15 cm x 6 cm x 1, 5 cm; vacuum-pressure, 15 cm x 6 cm x 
4 cm 

(1) Specimen surfaces treated: for dipping, 0,0243 m2; for spraying, 0,009 m2; volumes treated for vacu-
um-pressure, 135x10-6 for specimens 1,5cm thick, and 36x10-5 for specimens 4 cm thick. 

(2) Specimens are 15 cm x 6 cm, either 1,5 cm or 6 cm thick. They consist essentially of heartwood. A 
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few consist of sapwood/heartwood. 

(3) Specimen surfaces treated: for dipping, 0, 0243 m2; for spraying, 0, 009 m2; volumes treated for  
vacuum-pressure, 135x10-6 for specimens 1,5 cm thick, and 54x10-5 for specimens 6 cm thick.

The retention after vacuum-impregnation indicated a higher uptake in pine (650 kg/m3) than in spruce (250 
kg/m3), in line with previously measured on similar softwood species (Civardi et al. 2015). The higher number 
of bordered pits and open pits in pine explains in large part this discrepancy. It is worth noting that increasing 
the thickness of the specimens from 1, 5 cm to 6 cm did not significantly affect the yields of uptake, suggesting 
that penetration was limited.

Active agents penetration and retention are influenced by wood micro-anatomy

Tracing the ingress of the pesticide products within the specimens was first evaluated visually by  
examination of the color contrast appearing on the transverse section of the samples (Figure 2). In all spec-
imens, irregular delineation of the impregnated zone was observed, indicating the uneven penetration of the 
preservative formulation. 

Figure 2: Visual observation of XILIX® LabF2018_008 gel formulation penetration in specimens of spruce 
and pine wood impregnated by spraying process. Dotted line delineates penetration in spruce (a) and pine 

(b) sprayed on one face, underscoring the non-homogenous penetration due to local anatomical structure in 
wood. (c) spruce, and (d) pine, show a more complete impregnation when the specimens were impregnated 
on two faces; (e - g) illustrate the anatomy and the functioning of bordered pits. (e) scanning view (f) bor-

dered pit scheme: on the left part, unobstructed pit pair with a torus (T) and a margo (M) – blue arrows indi-
cate liquid passage; on the right, aspirated pit with the margo flexing and obstructing liquid passage (g) on 

the left part, face view of aspirated bordered pits (FE-SEM micrograph); on the right, face view showing the 
torus surrounded by the porous pit membrane forming the margo (from Sano 2016). 

Such irregularity is imposed by the anisotropy of the multi-cellular wood structure. Tracheids favor up-
take in longitudinal direction, whereas resin canals cause lower uptake in the lateral direction. This irregular 
penetration in longitudinal and transverse directions may be also ascribed in part to the smaller diameter of the 
tracheids in latewood (ca. 15 µm to 20 µm) compared to early wood (ca. 40 µm to 50 µm)  (Taylor and Moore 
1981). That affects the flow, in agreement with Darcy’s law (Siau 1984), as well as the larger number of pit 
connections between cells in latewood compared to earlywood. Variations of conductivity in ray parenchyma 
also participate to the irregularity of penetration. It has to be noted that ray tracheids and ray parenchyma cells 
are ten times more numerous in pine than in spruce (Ulvcrona 2006, Zlahtic et al. 2017). The role of pits in 
preservative penetration and their influence on permeability have been suggested (Baines and Saur 1985, Usta 
2005). After the drying step of the specimens, pine sapwood crossfield pits, between longitudinal tracheids 
and radial tracheids, become more open contrary to spruce which has less radial tracheids and in which they 
remain almost unaffected (Johansson and Sehlstedt-Persson 2006). In pine sapwood, penetration and diffusion 
follow a path through the disrupted pit membranes between large size longitudinal tracheids and ray cells, 
whereas penetrability in spruce heartwood becomes reduced due to the presence of extractives and resin canals 
(Garcia-Esteban and De Palacios 2009). The opening or closure of the pits (Figure 2) greatly depends on mois-
ture content (Flynn 1995, Usta and Hale 2003, Usta 2005). Reduction of humidity to around 15 % to 25 % is 
normally achieved before treatment. Significant reduction in the permeability (Sint et al. 2011) during drying 
has been related to the aspiration of bordered pits (Booker and Evans 1994, Vinden et al. 2003, Pànek and 
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Reinprecht 2011) and the number and repartition of the micropores in the aspired membrane of the pits. Drying 
facilitates the flow pathway in pine sapwood in which bordered pits are more open after drying than in spruce 
(Johansson and Sehlstedt-Persson 2006). Pressure treatments may sometimes induce pit opening by the rupture 
of the membrane, resulting in widening of the opening diameters to ca. 4000 nm (Siau 1984, Matsunaga et al. 
2009). In ray tracheid’s, parenchyma cells at the junction of the annual ring often interrupt abruptly the pen-
etration. In spruce, the different-sized tracheid’s and the smaller pits reduce penetration. All these anatomical 
aspects contribute to variations of permeability in longitudinal and transverse directions and partly explain the 
non-homogeneous penetration of the formulations. 

Direct observation in microscopy, including electron microscopy (Olsson et al. 2001), provides a more de-
tailed account of penetration and retention in the different tissues. Moreover, retention within secondary walls 
(pore size of about 1 cm to 30 nm, Yin et al. 2015), has previously been demonstrated in electron microscopy 
(Civardi et al. 2015) by specific immuno-gold labeling of cypermethrin by transmission electron microscopy 
(Ruel et al. 2015), and corroborated by Civardi et al. (2016). In this respect, it is noteworthy that the size of 
the emulsion gels particles (10 nm to 100 nm) (Candau 1990) is well tailored to the diameter of the pores in 
secondary walls. 

Quantitative determination of active agents according to penetration depth

Chemical analysis by GC-MS of samples taken at increasing distance from surface gave a precise  
appreciation of retention and penetration depth of the respective active agents, cypermethrin, from the liquid 
AXIL®  LAB2013_131®, and the gel XILIX® LabF2018_009, allowing monitoring cypermethrin, permethrin 
and propiconazole, after extraction from the specimens. The higher values of retention of active agents in the 
spraying process are related to the high amount of the formulation deposited on the surface of the specimens, 
ca. 500 g/m2. 

The analytical results demonstrate the higher total uptake (almost double) of active agents in pine wood 
than in spruce wood. Table 2 shows the retention of the active agent at three penetration depths: within the first 
3 mm from surface, between 3 mm to 6 mm, 6 mm to 9 mm, and 9 mm to 12 mm. Both pine and spruce showed 
a clear negative gradient of retention of the active agent with the distance from the surface. 

Table 2: Absorption of active agent in pine (P. sylvestris) and spruce (P. abies); repartition at various depths 
from surface, according to the mode of application. 

*Vacuum-impregnation on specimens 6 cm in thickness 
**Percent repartition of retained product at increasing depths 

n.d: non-detectable 
***Values are the mean of three assays.
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The quantitative analysis as a function of depth underscores the impact of the process of application that 
appears in the percentages of distribution of the active agents according to the distance from the surface. The 
rather important values discrepancies between the specimens must be ascribed to the differences inherent to 
wood internal anatomical variations. Thus, in pine wood, it is clear that the insecticide molecule applied by 
the two surface processes, dipping and spraying, accumulates predominantly within the first 3 mm from the 
surface and could not be detected beyond 9 mm. This was less conspicuous in the case of the vacuum-impreg-
nation process (Tripathi and Poonia 2015) in which the air and moisture from wood lumens are evacuated, 
leading to so-called full cell impregnation (Konopka et al. 2018). This resulted in a more progressive gradient 
of distribution from the surface inwards, extending beyond 12 mm, as shown by the retention of still about 10 
% of the active agent between 9 mm to 12 mm in pine, way higher than by dipping. 

A similar trend can be observed for the spraying process, though on a lesser distance since the agents 
did not penetrate significantly beyond 9 mm. These differences due to the modes of application show that the 
totally passive diffusion of the dipping process leads to a limited penetration. This was modulated by the dura-
tion of dipping on pine wood for 3 minutes or 15 minutes which underscored the influence of the duration of 
impregnation since in the former condition of 3 min, the retention was maximal at more than 70 % within the 
first 3 mm, then decreased rapidly to around 27 % in the next 3 mm up to 6 mm, to be almost null around 6 mm 
and beyond. When these two dipping durations were applied to spruce, the effect was not as clear. Importantly, 
in the thicker board specimens, after 21 days of drying following surface application, the penetration could be 
observed beyond 2 cm deep in spruce and 3 cm deep in pine (Table 3 and Table 4). Such a depth of impregna-
tion shows the good diffusion efficiency of the bio-based gels in boards. Although a difference between pine 
and spruce is still observed, the extent of diffusion due to micro-emulsion gel formulation was improved for 
the refractory species compared to previous data with other formulations (Messaoudi et al. 2018). 

Monitoring of the specific penetration of cypermethrin, propiconazole and permethrin in the  
spraying process

In the formulation XILIX® LabF2018_008, the fungicide propiconazole and the insecticide permethrin, 
are present at the concentration of about 1,2 % and 0,5 %, respectively (i.e., a ratio propiconazole/permethrin 
of 2,41). The fate of these two active molecules in pine and spruce woods treated by spraying was followed by 
GC-MS analysis. The depth of penetration of each active agent was monitored as a function of distance from 
the sprayed surface in several specimens (40 cm x 20 cm x 5 cm) from different boards, in view of detecting 
the easiness of diffusion of propiconazole vs permethrin in pine and spruce, respectively. 

Table 3:  Active products content at different depths of penetration in Pine and Spruce specimens subjected 
to surface spraying with the preservative gel formulation XILIX® LabF2018_008 formulation*. 

*XILIX® LabF2018_008 comprised 1,23 % propiconazole and 0,51 % permethrin (i.e. ratio of 2,41). 
**A, B and C were specimens taken from three different planks of pine and spruce, respectively, on which samplings of 2 mm were 

taken at distances from surface. The values reported are the mean from three specimens per plank (±). 
***One face: board sprayed one face; 2 faces: boards sprayed one 2 faces.



                Maderas. Ciencia y tecnología 22(4): 505 - 516, 2020

                                                                                                                

Universidad del Bío-Bío

512

The results in Table 3 and Table 4 show the amount of propiconazole and permethrin found at depths of 3 cm 
from the surface in pine wood, and 1 cm and 2 cm in spruce.

Table 4: Permethrin and propiconazole retention at different depths from surface and uptake in Pine and 
Spruce boards impregnated by spraying with the gel formulation XILIX® LabF2018_008.

*PA: Pine; board A; SA: Spruce; board A.

They revealed that in all cases, the fraction of permethrin that penetrates was proportionally higher than 
that of propiconazole, as indicated by the ratios of propiconazole to permethrin lower than that of the ratio 
of 2,41 in XILIX®LabF2018_008 formulation. This was even more pronounced when spraying was applied 
to the two faces of the specimens, both for pine and spruce wood. Monitoring the fate of cypermethrin from 
AXIL® LAB2013_131® showed the decreasing gradient of its retention according to the distance from sur-
face in both wood species (Table 5). This also showed the deeper penetration (beyond 12 mm) in pine when  
vacuum-pressure was applied. The humidity of the specimens below 20 % may influence the penetrability and 
conduction since it has been shown that below the fiber saturation point (FSP generally near 30 %) (Ulvcrona 
2006) permanent structural changes occur, mainly concerning border pits. The proportion of earlywood and 
latewood is an important factor involved in the variations of penetration observed between different boards and 
specimens from a same log.

The quantitative analysis of half-specimens with dimensions of 48 cm x 20 cm x 5 cm kept for 21 days 
at 20 °C and 65 % RH after spraying was performed on 2 mm samples taken at distances from the surface 
compared to the total distribution of the active agents from surface to the same distance (Figure 1 and Table 3). 
In pine specimens, the analysis was done at a distance of 3 cm, and the quantitative amount of propiconazole 
versus permethrin was another indication of the accumulation of specific pesticide molecules from the surface.

Table 5: Penetration and Retention of Cypermethrin from formulation AXIL® LabF2013_131 in Pine and 
Spruce wood.
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The ratios of propiconazole/permethrin, both at 3 cm and within the first 3 cm from surface, inferior to the ratio 
of 2,41 in the applied original formulation, show that permethrin is preferentially fixed at all depths of penetra-
tion (Table 5). The same trend was observed in spruce with ratios of the same order of magnitude but always 
lower in the easily impregnable species. The low moisture content of the specimens, below FSP, suggests that 
pyrethrin compounds, cypermethrin and permethrin, the less water soluble of the three agents (quasi null for 
cypermethrin, 5,5 mg/L for permethrin versus 100 mg/L for the triazole compound propiconazole; (SPEX 
CertiPrep 2016) penetrate more easily the hydrophobic lignified network of secondary walls. This, together 
with their difference in polarity, makes the pyrethrin agents penetrate more easily the lignified cell secondary 
walls. This suggests that, due to the high lignin content of softwood tracheids and xylem, giving them a sig-
nificant hydrophobicity, the transportation of the more water-insoluble agents is facilitated. All that indicates 
the influence of the chemical nature and polarity of the active pesticide agents on their respective penetration 
and retention. 

CONCLUSIONS

Using our bio-based liquid and gel microemulsion formulations of wood preservatives, surface applica-
tion by dipping resulted in only a slightly higher retention in g/m2 in pine than in spruce specimens, contrary 
to the larger difference in uptake observed when a driving force was involved in the procedure as in spraying 
and mostly vacuum-impregnation processes. Thus, in the purely surface process, the retention was maximal 
(around 70 % or more) within the first millimeters from the surface of impregnation, then decreases rapidly. 
Conversely, when a pressure is exerted, as in the vacuum-impregnation mode, penetration is more homoge-
neous and deeper and progressively extends deeper up. In fact, simple dipping corresponds to passive diffusion 
of the preservative agents since only direct surface contact is involved, in the absence of external applied force. 
Diffusion is thus limited to the accessible natural liquid paths in the wood structure, largely dependent on the 
sapwood-heartwood ratio and to the degree of pore interconnectivity, the so-called tortuosity, controlled by the 
status of the bordered pits. 

Importantly, after a drying period of 21 days following surface application, the significant diffusion in 
spruce and pine board specimens shows the efficiency of the bio-based emulsion gels. It underscores the im-
proved impregnation due to the specific composition of these aqueous gel formulations in both the penetrable 
and the refractory species. In this process, the low particle size of the droplets in the microemulsion gels makes 
these better vectors and allows better stability and penetration of preservative agents. This efficient impregna-
tion by formulation XILIX® LabF2018_008 supports its observed biological efficacy (data not shown). 

The anatomical characteristics of penetrable and refractory softwood species respectively, explain the 
different impregnability observed between pine and spruce wood. Interestingly, the vacuum-impregnation pro-
cess, corresponding to full-cell impregnation tends to reduce the difference between the penetrability of the 
two species by forcing the product to a maximal absorption, thereby warranting a better protection of the wood. 

The present work highlights the positive role of liquid and gel microemulsions. It shows correlations be-
tween penetration and wood species microstructure under various modes of application. Although the relation 
between preservative penetration and wood anisotropic structure is complex, the present results should be 
of practical importance to enhancing the efficacy of wood preservation treatments by controlling the factors 
pointed out in this work. It also shows the better diffusion of cypermethrin and permethrin than that of propi-
conazole, illustrating the efficiency of the emulsion gels on the diffusion capacity of the insecticide agents. 
Altogether, these data will be useful for estimating the capacity of penetration and retention of a type of pre-
servative formulation and its potential of protection according to the wood species.  

REFERENCES

ASTM.  2020. Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gas-
eous Samples Using Radiocarbon Analysis. ASTM D6866.  2020. ASTM: West Conshohocken, PA, USA. 



                Maderas. Ciencia y tecnología 22(4): 505 - 516, 2020

                                                                                                                

Universidad del Bío-Bío

514

http://www.astm.org/cgi-bin/resolver.cgi?D6866-20.

Baines, E.F.; Saur, J. 1985. Preservative treatment of spruce and other refractory species.

In Annu Proc Am Wood Preserv Assoc. 1985. Granbury, TX, USA. American Wood-Preservers’Associa-
tion. 81: 136-147.    

Booker, R.E.; Evans, J.M. 1994. The effect of drying schedule on the radial permeability of Pinus radiata 
D. Don. Holz Roh Werkstoff 52: 150-156. https://doi.org/10.1007/BF02615211.

Candau, F. 1990. An introduction to polymer colloids. In Scientific methods for the study of polymer col-
loids and their applications. Candau, F.; Ottewill, R.H.  (eds). Kluwer Academic Publishers. p. 73. 

Civardi, C.; Schwarze, F.W.M.R.; Wick, P. 2015. Micronized copper wood preservatives: An effi-
ciency and potential health risk assessment for copper-based nanoparticles.  Environ Pollut 200: 126-132.     
https://doi.org/10.1016/j.envpol.2015.02.018.

Civardi, C.; Van den Bulcke, J.; Schubert, E.; Michel, M.; Butron, M.I.; Boone, M.N.; Dierick, M.; 
Van Acker, J.; Wick, P.; Schwarze, F.W.M.R. 2016. Penetration and Effectiveness of Micronized Copper in 
Refractory Wood Species. PLoS One 11(9): e0163124.  https://doi.org/10.1371/journal.pone.0163124.

Comstock, G.A.; Côté Jr, W.A. 1968. Factors affecting permeability and pit aspiration in coniferous 
sapwood. Wood Sci Technol 2: 279-291.  https://doi.org/10.1007/BF00350274.

Du, X.; Lucia, L.A.; Ghiladi, R.A. 2016. A novel approach for rapid preparation of monophasic mi-
croemulsions that facilitates penetration of woody biomass. ACS Sustain Chem Eng 4(3): 1665-1672.   
https://doi.org/10.1021/acssuschemeng.5b01601.

EN. 2016. Durability of wood and wood-based products - Testing and classification of the durabil-
ity to biological agents of wood and wood-based materials. EN 350. 2016. CEN: Brussels, Belgium.  
https://www.cen.eu/Pages/default.aspx.

EN. 2017. EN 16640-X85-002-2017: Bio-based products – Determination of the bio-
based carbon content of products using the radiocarbon method. CEN: Brussels. Belgium  
https://standards.iteh.ai/catalog/standards/cen/53004db7-e85b-433a-9ed5-5aaed4242fde/en-16640-2017.

EN NF. 2004. Agents de surface - détermination de la tension superficielle. AFNOR normalization Edi-
tions: France. EN NF 14370. 2004. https://www.boutique.afnor.org/norme/nf-en-14370/agents-de-surface-de-
termination-de-la-tension-superficielle/article/791494/fa114462

Evans, P. 2003. Emerging technologies in wood protection. Forest Prod J 53(1): 14-22.  
https://search.proquest.com/docview/214641686?pq-origsite=gscholar&fromopenview=true 

Flynn, K.A. 1995. A review of the permeability, fluid-flow, and anatomy of spruce (Picea spp.). Wood 
Fiber Sci 27(3): 278-284.  https://wfs.swst.org/index.php/wfs/article/view/1659.

Garcia-Esteban, L.; De Palacios, P. 2009. Comparative wood anatomy in Abietoideae (Pinaceae). Bot J 
Linn Soc 160: 184-196. https://doi.org/10.1111/j.1095-8339.2009.00971.x.

Griggs, J.L.; Rogers, K.R.; Nelson, C.; Luxton, T.; Platten, W.E.; Bradham, K.D. 2017. In vitro 
bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood. Sci Total 
Environ 598: 413-420. https://doi.org/10.1016/j.scitotenv.2017.03.227.

Haller, K.K.; Ventikos.; Poulikakos, D. 2002. Computational study of high-speed liquid droplet impact. 
J Appl Phys 92: 2821-2828. https://doi.org/10.1063/1.1495533.

Hass, P.; Wittel, F.K.; Stampanoni, M.; Kastner, A.; Mannes, D.; Niemz, P. 2009. 3D characterization 
of adhesive penetration into wood by Means of synchrotron radiation. In Proceedings of the International Con-
ference on Wood Adhesives. September 28-30, 2009. Lake Tahoe, Nevada, USA. Frihart, C.R.; Hunt, C.G.; 
Moon, R.J. (Eds.). Forest Products Society: Madison, WI, USA. pp 348-352. 



                Maderas. Ciencia y tecnología 22(4): 505 - 516, 2020

       

Uptake of insecticides and..: Messaoudi et al.

515

Johansson, D.; Sehlstedt-Persson, M. 2006. Effect of heat treatment on capillary water absorption of 
heat-treated pine, spruce and birch.  In Wood structure and properties. Proceedings of the 5th IUFRO Sympo-
sium Wood Structure and Properties. September 3-6, 2006, Sliač - Sielnica, Slovakia. Lagana, R.; Kurjatko, S.; 
Kudela, J. (Eds.). Arbora Publishers: Zvolen, Slovakia. pp 251-255.

Kang, S.M.; Morrell, J.J.; Simonsen, J.; Lebow, S. 2005. Creosote movement from treated wood im-
mersed in fresh water. Forest Prod J 55(12): 42-46. https://www.fs.usda.gov/treesearch/pubs/27107.

Konopka, A.; Barański, J.; Orłowski, K.; Szymanowski, K. 2018. The effect of full-cell impregnation 
of pine wood (Pinus sylvestris L.) on changes in electrical resistance and on the accuracy of moisture con-
tent measurement using resistance meter. BioResources 13(1): 1360-1371. https://ojs.cnr.ncsu.edu/index.php/
BioRes/article/view/BioRes_13_1_1360_Konopka_Full_Cell_Impregnation_Pine_Wood. 

Koran, Z. 1989. Anatomy and treatability of spruce wood. In Proceedings 1988 Forintek wood preserva-
tion seminar, November 4, 1988, Vancouver, Canada. pp 23 - 41. 

Lehringer, C.; Richter, K.; Schwarze, F.W.M.R.; Militz, H. 2009a. A review on promis-
ing approaches for liquid permeability improvement in softwoods. Wood Fiber Sci 41(4):373-385.  
https://wfs.swst.org/index.php/wfs/article/view/683. 

Lehringer, C.; Arnold, M.; Richter, K.; Schubert, M.; Schwarze, F.W.M.R.; Militz, H. 2009b. Bioin-
cised wood as substrate for surface modifications. In The Fourth European conference on wood modification. 
Englund, F.; Hill, C.A.S.; Militz, H.; Segerholm B.K. (Eds.), SP Technical Research Institute of Sweden, 
Stockholm, Sweden. pp. 197-200.

Matsunaga, H.; Kiguchi, M.; Evans, P.D. 2009. Microdistribution of copper-carbonate and iron oxide 
nanoparticles in treated wood. J Nanopart Res 11: 1087-1098. https://doi.org/10.1007/s11051-008-9512-y.

Messaoudi, D.; Jame, P.; Oberlin, C. 2018. Développement de solutions biosourcées innovantes pour 
la durabilité conférée des matériaux face aux agents biologiques. In FIBRA Innovation Congrès International 
de la Construction Biosourcée - Halle Pajol - Paris 18 - France – 3-4 October. Fibra international. BioBuild 
Concept.

Mohamad-Shahimin M.F.; Siddique T. 2017. Methanogenic biodegradation of paraf-
finic solvent hydrocarbons in two different oil sands tailings. Sci Total Environ 583: 115-122.      
https://doi.org/10.1016/j.scitotenv.2017.01.038.

Nyrén, V.; Back, E. 1960. Characteristics of parenchymateous cells and tracheidal ray cells in Picea abies 
Karst. Svensk Papperstidning 63(16):501-509.

Obounou Akong, F.; Gérardin, P.; Thévenon, M-F.; Gérardin-Charbonnier, C. 2013. State of prog-
ress of utilization of supramolecular gels for formulations of water-soluble wood preservation salts. In Pro-
ceedings IRG Annual Meeting, IRG/WP 13-30630. The International Research Group on Wood Protection: 
Stockholm, Sweden. 

Olsson, T.; Megnis, M.; Varna, J.; Lindberg, H. 2001. Study of the transverse liq-
uid flow paths in pine and spruce using scanning electron microscopy. J Wood Sci 47(4): 282-288.    
https://doi.org/10.1007/BF00766714.

Pànek, M.; Reinprecht, L. 2011. Bacillus subtilis for improving spruce wood impregnability.  
BioResources 6(3): 2912-2931. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_3_2912_
Panek_R_Bacillus_Spruce_Impregnability/1053  

Rhatigan, R.; Freitag, C.; El-Kasmi, S.; Morrell, J.J. 2004. Preservative treatment of Scots pine and 
Norway spruce. Forest Prod J 54(10): 91-94.  https://search.proquest.com/docview/214627166?pq-origsite=g-
scholar&fromopenview=true 

Richardson, B.A. 1993. Wood Preservation. Second edition.  E & FN SPON, Chapman & Hall London: 
London.



                Maderas. Ciencia y tecnología 22(4): 505 - 516, 2020

                                                                                                                

Universidad del Bío-Bío

516

Ruel, K.; Tapin-Lingua, S.; Messaoudi, D.; Fahy, O.; Jequel, M.; Petit-Conil, M.; Joseleau, J.P. 2015. 
Probing biocide penetration and retention in wood products by immulabeling techniques. In Proceedings Wood 
Science and engineering in the third millennium, International Conference10th edition. November 5-7, ICWSE 
2015. Gurau, L.; Campean, M.; Ispas, M. (Eds.). Transilvania University, Brasov, Romania. 

Sano, Y. 2016. Bordered Pit Structure and Cavitation Resistance in Woody Plants. 
In Secondary Xylem Biology, Origins, Functions, and Applications. Chapter 7: 113-130.  
https://doi.org/10.1016/B978-0-12-802185-9.00007-3.

Sarpap SA. 1995. Brevet FR 2740659. Composition de préservation pour les bois et son utilisation. SAR-
PAP SA :  Marais Ouest, Gardonne, France. 

Siau, J.F. 1984. Transport processes in wood. Springer Verlag: Berlin. 243 p.

Sint, K.M.; Militz, H.; Hapla, F.; Adamopoulos, S. 2011. Treatability and pene-
tration indices of four lesser used myanmar hardwoods. Wood Res-Slovakia 5: 13-22.  
http://www.woodresearch.sk/wr/201101/02.pdf.

SPEX CertiPrep. 2016. Guide to solubility. SPEX CertiPrep Certified Reference Materials - Inorganic 
and Organic Standards: NJ, USA. 
https://www.spexcertiprep.com/knowledge-base/files/Guide-to-Pesticide-Solubility.pdf

Taylor, F.W.; Moore, J.S. 1981. A comparison of earlywood and latewood tracheid length in Loblolly 
pine. Wood Fiber Sci 13(3): 159-165. https://wfs.swst.org/index.php/wfs/article/view/1995.

Teng, T.J.; Mat Arip, M.N.; Kumar, S.; Nemoikina, A.; Jalaludin, Z.; Ng, E.P.; Lee, H.L. 2018. Con-
ventional Technology and Nanotechnology in Wood Preservation: A Review. BioResources 13(4): 9220-9252. 
https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_4_Teng_Review_Conventional_Techno-
logy_Nanotech_Wood.

Tripathi, S.; Poonia, P.K. 2015. Treatability of Melia composita using vacuum pressure impregnation. 
Maderas-Cienc Tecnol 17(2): 373-384. http://dx.doi.org/10.4067/S0718-221X2015005000035.

Ulvcrona, T. 2006. Impregnation of Norway spruce (Picea abies L. Karst.) wood with hydrophobic oil. 
Ph.D.  Thesis, Swedish University, Umea, Sweden. https://pub.epsilon.slu.se/1214/.

Usta, I. 2005. A review of the configuration of bordered pits to stimulate the fluid flow. Maderas-Cienc 
Tecnol 7(2): 121–132. http://dx.doi.org/10.4067/S0718-221X2005000200006.

Usta, I.; Hale, M.D. 2003. Radial permeability of Sitka spruce as affected by wood structure:  
Permeability of cross-field pits in unideriate rays. IAWA J 24(2): 197-204.  
https://doi.org/10.1163/22941932-90000332.

Vinden, P.; Romero, J.; Torgovnikov, G. 2003. A method for increasing the permeability of wood. US 
patent 6: 596-975. Application Number: 09/719294  https://patents.google.com/patent/US6596975B1/en.

Wardrop, A.B.; Davies, G.W. 1961. Morphological factors relating to the penetration of liquids into 
wood. Holzforschung 15(5): 129-141.  https://doi.org/10.1515/hfsg.1961.15.5.129.

Yin, J.; Song, K.; Lu, Y.; Zhao, G.; Yin, Y. 2015. Comparison of changes in micropores and 
mesopores in the wood cell walls of sapwood and heartwood. Wood Sci Technol 49: 987-1001.  
https://doi.org/10.1007/s00226-015-0741-9.

Zlahtic, M.; Mikac, U.; Sersa, I.; Merela, M.; Humar, M. 2017. Distribution and penetra-
tion of tung oil in wood studied by magnetic resonance microscopy. Ind Crop Prod 96: 149-157.     
http://dx.doi.org/10.1016/j.indcrop.2016.11.049.

Zhang, Y.L.; Zhang, S.Y.; Dian, Q.Y.; Wan, H. 2006. Dimensional stability of wood polymer  
composites. J Appl Polym Sci 102(6): 5085- 5094.  https://doi.org/10.1002/app.23581.


