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ABSTRACT

Polylactic acid is one of the most used biopolymers due to its overall properties and biodegradability. 
Nevertheless, polylactic acid has important drawbacks such as brittleness, low thermal stability, and higher 
cost than most commodity polymers. In order to overcome those disadvantages without compromising bio-
degradability, the addition of wood particles and thermal annealing on the crystallinity and impact strength of 
wood-polylactic acid  biocomposites were studied. The samples were prepared by compression and rotational 
molding using two different wood particles: white ash and tzalam. The results showed that thermal annealing 
at 100 °C, 40 minutes, increased the crystallinity up to 60 % and also improved the thermal stability of poly-
lactic acid  and its biocomposites as determined via dynamic mechanical analysis. The specimens not exposed 
to thermal annealing exhibited important storage modulus loss above 60 °C, which mostly disappeared with 
the thermal treatment. Furthermore, the impact strength was substantially increased by the thermal treatment. 
Additionally, accelerated weathering tests showed that the thermally annealed samples had better dimensional 
stability growing their potential applications over a wider range of conditions.
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INTRODUCTION

The use of biodegradable polymers has significantly increased over the last years, especially the polylac-
tic acid (PLA) due to its good properties such as high mechanical strength, easy processability, and a wide 
range of available commercial grades (González-López et al. 2018, Altuntas and Aydemir 2019). PLA is a 
semi-crystalline aliphatic polyester with applications in the agricultural, biomedical, and packaging industries 
(Kim et al. 2007). Its properties are similar to other general-purpose polymers such as polypropylene (PP) 
and polystyrene (PS), being an excellent material for several fields like electronics, automotive, food, and 
construction industries (Faludi et al. 2013). Nevertheless, PLA has some critical drawbacks such as brittleness, 
low thermal stability, and higher cost than commodity polymers (Frone et al. 2013). Therefore, strategies have 
been developed to overcome these disadvantages. One example is the addition of natural fibers to produce 100 
% biodegradable biocomposites, reducing cost, enhancing thermal stability, and improving some mechanical 
properties (Pérez-Fonseca et al. 2016). On the other hand, natural fibers are biodegradable, non-toxic, and low 
cost (Adefisan and McDonald 2019). They are also obtained from renewable sources and produce less abrasion 
than inorganic fillers (Dong et al. 2014).

 The low crystallinity and brittleness of PLA limit some of its applications (Piekarska et al. 2017). In order 
to increase the crystallinity of polymers, one option is to include nucleating agents like talc, clays, or other  
similar particles (Yang et al. 2015). However, these particles usually decrease the impact strength of  
biocomposites (Petchwattana et al. 2014). Another strategy is to perform a thermal annealing treatment  
(Ferrer-Balas et al. 2001), which consists of placing the samples under controlled temperature and time  
conditions. For example, Srithep et al. (2013) performed thermal annealing on injection molded PLA using different  
temperatures (65 ºC to 80 ºC) and time intervals (10 min up to 31 h). It was observed that the highest amount 
of crystallinity (49 %) was obtained at 80 ºC for 30 min. Also, increasing the crystallinity from 16 % to 49 % 
improved the tensile strength by 17 % and the tensile modulus by 7 %. Mathew et al. (2006) prepared PLA-cel-
lulose composites by injection molding and annealed the sample at 80 ºC for three days. It was observed that 
as crystallinity increases from 19 % to 57 %, there was a substantial improvement in the thermal stability as 
determined via dynamic mechanical analysis (DMA). Perego et al. (1996) also prepared PLA samples by  
injection molding and applied thermal annealing at 105 ºC for 90 min. They observed an increase in the  
melting enthalpy (ΔHm), impact strength, and heat resistance, as well as the tensile and flexural modulus, while 
the tensile and flexural strengths decreased. Also, Pérez-Fonseca et al. (2016) produced biocomposites based 
on PLA with 10 % to 30 % wt. of pine, coir, or agave fibers. They noted that the storage modulus and impact 
strength improved when the fiber content was increased, and higher values were reported when the samples 
were thermally annealed at 105 ºC for 60 min.

So far, most of the studies use injection molding to produce biocomposite samples, and there is very  
limited literature about PLA-based materials processed by rotational molding. For example, Greco et 
al. (2014), Greco and Maffezzoli (2015) and  Greco and Maffezzoli (2017) used PLA (neat and plasti-
cized) for rotational molding and provided information about its processing window (powder coalescence,  
sintering, and thermal degradation). Then, Cisneros-López et al. (2018) successfully produced PLA-agave fiber  
biocomposites via dry-blending and rotational molding. Due to the absence of shear stresses during processing, 
the rotomolded samples presented high porosity, compromising the mechanical properties at high fiber content, 
especially impact strength. More recently, González-López et al. (2019) chemically treated agave fibers to 
modify the PLA-fiber compatibility in rotomolded biocomposites. Although the flexural and tensile properties 
were improved, the impact strength did not change with the treatment.

Based on the information available, thermal annealing is an interesting strategy to improve the  
thermal stability and impact strength of PLA biocomposites because it does not require any additives. In this 
work, thermal annealing was applied to increase the crystallinity of PLA and its biocomposites based on two  
different wood fibers (white ash and tzalam). The samples were processed by rotational and compression 
molding to determine the effect of the processing method. Finally, the effect of thermal annealing was studied 
for both processing methods. All the samples are characterized in terms of morphological, mechanical, and 
thermal properties. For more characterization, water absorption and accelerated weathering tests were carried 
out to get a better idea about these materials’ long-term behavior, i.e., during their potential lifetime.
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MATERIALS AND METHODS

Materials

The materials used were polylactic acid 3251D supplied by Nature Works LLC (USA) with a MFI of 80 
g/10 min (190 ºC/2,16 kg) and a density of 1,24 g/cm3. Two different types of wood particles were obtained 
from residues of tzalam wood (Lysiloma latisiliquum (L.) Benth) from Chetumal (Quintana Roo, Mexico) and 
white ash wood (Fraxinus americana L.) from the USA provided by Grupo Tenerife S.A. de C.V. (Mexico). 
Both types of wood residues were ground and sieved to keep only particle sizes of 212 μm to 500 μm. 

Biocomposites preparation

The biocomposites were prepared using 15 % and 30 % wt. of wood content. Before their processing, 
PLA, tzalam (TZ), and white ash (WA) were dried in an oven for 48 h at 65 ºC. The compounds were prepared 
by dry-blending using a high shear mixer with dull blades (JR Torrey, USA) for 5 min at 3750 rpm (393 rad/s). 
Then, the blends were processed by compression or rotational molding. Compression-molded (CM) samples 
were prepared in a laboratory press at 180 ºC using a mold of 12,5 cm × 12,5 cm × 1,8 mm. The material was 
preheated for 4 min, and the pressure was applied gradually until 200 bar was attained for 6 min. Later, the 
mold was removed from the press and cooled by forced air for 10 min. On the other hand, rotational-molded 
(RM) samples were prepared in a laboratory-scale rotational molding machine with a stainless-steel mold of 15 
cm × 15 cm × 16 cm and 2,0 mm to 2,5 mm in wall thickness. The following steps were applied: (1) preheating 
the oven at 300 ºC, (2) loading 350 g of the dry-blended mixture into the mold and heating inside the oven for 
24 min with a rotational speed ratio of 4:1 (Cisneros-López et al. 2018), (3) cooling with air convection for 24 
min, and (4) demolding. Finally, the biocomposites obtained by rotational and compression molding were cut 
for all the characterization.

Morphology and density

The average particle sizes (L, length; D, diameter) were obtained from optical micrographs using a Nikon 
DSLR D5100 camera with an AF-S Micro Nikkor 85 mm lens. At least 100 particles were measured using 
Image-Pro Plus Software. Samples of the biocomposites were cryogenically fractured using liquid nitrogen, 
and the exposed cross-sections were coated with Au. Micrographs were then taken at different magnifications 
using a scanning electron microscope (SEM) TESCAN MIRA 3 LMU to characterize the state of wood parti-
cles adhesion/dispersion in the matrix. The wood particles and biocomposites’ density were determined with a 
ULTRAPYC 1200e gas pycnometer (Quantachrome Instruments, USA) using nitrogen.

Thermal annealing and DSC analysis

The thermal annealing treatment was carried out in an oven with temperature control by placing the sam-
ples on a flat wooden surface. After preliminary trials, it was decided to perform the thermal annealing at 100 
ºC for 40 min, which was the conditions that produced the highest crystallinity values. (Note: the code “T” 
corresponds to thermally treated samples, while the code “U” refers to untreated samples).

The crystallinity (Xc) was measured by differential scanning calorimetry (DSC) analysis in a TA Instru-
ments (USA) Q100. The samples (4-6 mg) were cut from molded specimens to perform a scan between 25 ºC 
and 200 °C at a heating rate of 10 °C/min under a nitrogen flow of 50 mL/min. The crystallinity was calculated 
as (Equation 1):

1(%)  100m c
c

ref

H HX x x
H x

∆ −∆
=

∆
    (1)

Where ∆Hm and ∆Hc are the heat of fusion and cold crystallization, respectively, ∆Href is the theoretical 
heat of fusion for 100 % crystalline PLA (93 J/g, Mathew et al. 2006), and x is the weight fraction of  PLA in 
the biocomposites.
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Dynamic mechanical analysis (DMA)

DMA was performed on a TA Instruments (USA) RSA3 using a three-point bending fixture. The tem-
perature was ramped from 40 ºC to 110 ºC at a heating rate of 1,5 °C/min using a frequency of 1 Hz under the 
auto-tension mode (0,02 % deformation). The test specimen dimensions were 30,0 mm x 12,7 mm x 1,8 mm to 
2,5 mm, and the span was 25 mm. For each sample, a minimum of two specimens was analyzed.

Charpy impact strength

The Charpy impact strength tests were performed at room temperature (23 ºC) according to ASTM D6110 
(2018) using an Instron Ceast (USA) model 9050 impact tester. The specimens with dimensions of 126 mm 
x 12,7 mm x 1,8 mm to 2,5 mm were notched 24 h before testing using an Instron Ceast 6897 notcher. The 
reported values are the average of at least ten specimens.

Tensile and flexural properties

Tensile and flexural properties were measured at room temperature (23 ºC) using a universal testing ma-
chine Instron Ceast (USA) model 4411. At least seven specimens were evaluated to obtain average values. 
According to ASTM D638 (2014), tensile tests were carried out using the type IV specimen and a 5 mm/min 
crosshead speed. For flexural tests, the ASTM D790 (2017) was followed using specimens of 80 mm x 12,7 
mm x 1,8 mm to 2,5 mm with a span of 16 times the samples’ thickness and a crosshead speed of 2 mm/min.

Water absorption and accelerated weathering

Water absorption tests were carried out according to ASTM D570 (2018). Five samples of each material 
with dimensions of 20 mm x 19 mm x 1,8 mm to 2,5 mm were dried and weighed. The samples were sub-
merged in distilled water at 23 ºC. Then, the samples were removed, wiped off with a dry cloth, and weighed. 
This procedure was repeated until a constant weight was reached. The maximum water absorption (M∞) was 
calculated as (Equation 2):

0

0

(%) 100W WM x
W
∞

∞

−
=    (2)

Where w∞ is the weight of the sample at the equilibrium and w0 the initial weight.

The effect of fiber content and thermal annealing on the behavior of the PLA and the biocomposites under 
weathering conditions was also studied. For this purpose, impact test specimens were subjected to accelerated 
weathering in a Q-Lab QUV (USA) basic equipment with UVB-313EL fluorescent bulbs. The test was carried 
out under controlled conditions of exposure to UV radiation, temperature, and humidity, according to ASTM 
D4329 (2013): UV irradiation (2 h) - condensation (2 h) cycles were applied for 600 h at 60 ºC. The physical 
appearance, DSC, DMA, and mechanical properties of the weathered (W) specimens were analyzed.

RESULTS AND DISCUSSION

Morphology and density

The average dimensions of the tzalam particles were L = 1263 μm ± 251 μm, D = 471 μm ± 93 μm, with 
an aspect ratio of 2,7 ± 0,6.  Similar values were obtained for white ash particles, with L = 1448 μm ± 366 μm, 
D = 466 μm ± 86 μm, and an aspect ratio of 3,1 ± 0,8. Figure 1 presents typical SEM images of RM and CM 
biocomposites for the different wood types and content. As reported previously (Pérez-Fonseca et al. 2016), 
the thermal annealing treatment did not modify the morphology, but the processing method substantially af-
fected the biocomposites structure. In general, voids, gaps, and fiber pull-out are observed due to the poor 
wood/matrix adhesion. As expected, these defects are more significant in RM samples due to lack of pressure 
during processing, especially at higher wood content (30 %), where several gaps and higher porosity were 
observed. The better morphology of CM samples was related to the high pressure applied during processing. 
This pressure allows higher material compaction producing fewer voids and better wood particles wettability, 
which, as discussed in the following paragraphs, gave higher density values (Altuntas and Aydemir 2019, Cis-
neros-López et al. 2018).
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Figure 1: Morphology of RM (first row) and CM (second row) white ash (WA) and tzalam (TZ) PLA bio-
composites at different wood content.

The density of the wood particles and the biocomposites are presented in Table 1. The addition of both 
wood fibers produced small decreases in RM and CM biocomposites’ density, even though tzalam and white 
ash particles densities (1439 kg/m3 and 1523 kg/m3, respectively) are higher than the density of neat PLA 
(1250 kg/m3). This density reduction is due to voids formation owing to fiber agglomeration, weak fiber-ma-
trix interface, and extractable vaporization (Mahfoudh et al. 2013). Also, the decrease in the density is more 
evident in RM biocomposites due to the rotational molding process’s low-shear nature, which produces their  
morphology observed in Figure 1 (Robledo-Ortíz et al. 2020). The treated samples’ density is not presented since no  
changes were observed by the thermal annealing treatment.

Table 1: Density of PLA and its biocomposites produced by compression and rotational molding.

 

 

WA: white ash; TZ: tzalam

Thermal properties

Semi-crystalline polymers typically have three transitions in a DSC thermogram: the first one corresponds 
to the glass transition temperature (Tg), the second one to the cold crystallization temperature (Tc), and the third 
one is the melting temperature (Tm). By applying thermal annealing, the peak corresponding to Tc disappeared, 
indicating that no crystal formation occurred during heating, and this is a good indicator of a successful thermal 
annealing process. This behavior can be observed in typical DSC thermograms presented in Figure 2, where 
thermally treated PLA and biocomposites did not show the Tc peak. Similar results were reported by Mathew 
et al. (2006) and Pérez-Fonseca et al. (2016) for PLA-based biocomposites.
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Figure 2: Typical DSC thermograms of PLA and its biocomposites before (U) and after (T) thermal  
annealing at 100 ºC for 40 min (WA: white ash; TZ: tzalam).

Table 2 reports on the Xc, Tg, Tc, and Tm values of PLA and its biocomposites before and after thermal an-
nealing (100 ºC and 40 min). The initial crystallinity of 19 % and 14 % were obtained for compression molded 
(CM) and rotomolded (RM) neat PLA. As expected, the wood particles served as nucleation sites for crystals 
formation (Adefisan and McDonald 2019), increasing Xc for all the biocomposites with a maximum value of 
28 % at 30 % wt. of white ash. It is also observed that the crystallinity was higher for compression-molded 
samples (up to 28 %) than for rotomolded ones (up to 20 %). The latter can be associated with the high pressure 
used during compression molding, which is absent in rotomolding. This high pressure generated samples with 
higher density, fewer voids, and better wood particles wettability, as observed in Figure 1 and Table 1, leading 
to a more efficient and homogeneous crystallization process.

After thermal annealing, the crystallinity of all the materials was substantially increased. The values ob-
tained for neat PLA were 56 % and 54 % for CM and RM, respectively. All the biocomposites achieved crys-
tallinity above 50 %: 60 % for CM and 54 % for RM. For comparison, Pérez-Fonseca et al. (2016) obtained 
crystallinity around 50 % for injection molded PLA and its pine, coir, and agave-based biocomposites, after 
applying a heat treatment of 105 ºC for 1 h.

Table 2: Crystallinity of PLA and its biocomposites produced by compression and rotational molding before 
and after thermal annealing.

 

WA: white ash; TZ: tzalam
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Before thermal annealing, the glass transition temperatures of the neat matrix produced via RM and CM 
were 63 ºC and 61 ºC, respectively. Thermal annealing or wood particles’ presence did not significantly modify 
these values: 61 ºC ± 2 ºC. For the cold crystallization temperature, no significant changes were observed due 
to fiber addition nor thermal annealing, except for the untreated 30 % wt. CM tzalam biocomposites with an 
important reduction from 104 ºC to 97 ºC. This behavior may indicate a higher nucleation effect accelerating 
the crystallization process at high TZ content. It has been reported that crystallization can be initiated at the 
wood-polymer interface (trans-crystallization), but at different surface locations (multiple nucleation sites) 
depending on the wood particle size and its chemical composition (Mathew et al. 2006, Arias et al. 2013). All 
the values obtained for the melting temperatures were around 169 ºC, suggesting that Tm was not affected by 
the thermal annealing.

Dynamic mechanical analysis (DMA)

Figure 3 presents the storage modulus of the neat PLA and its biocomposites before and after thermal 
annealing. As earlier discussed, a significant drawback of PLA is its substantial rigidity loss around its glass 
transition temperature ( 60 ºC), limiting its potential applications at a higher temperature. This loss of rigidi-
ty can be observed for the PLA processed by both CM (Figure 3b) and RM (Figure 3a), to a point where it was 
no longer possible to recover the storage modulus at higher temperatures. This softening effect is associated 
with the α-relaxation of the PLA amorphous regions (Mathew et al. 2006, Pérez-Fonseca et al. 2016).

When wood particles were added, the materials became more rigid, and less storage modulus loss 
was observed above the glass transition temperature due to the increased stiffness imparted by the  
lignocellulosic materials (Way et al. 2013). However, the decrease was still important; for example, PLA had a storage  
modulus of 7 MPa for RM and 5 MPa for CM at 70 ºC, while the maximum values were observed with 30 % 
wt. of white ash and tzalam with a storage modulus of 47 MPa and 68 MPa for RM, and 88 MPa and 47 MPa 
for CM, respectively.

Below the glass transition temperature, for example, at 40 ºC, the storage modulus decreased with wood 
particles’ content. At this temperature, the storage modulus of RM neat PLA was 1465 MPa, which was re-
duced to 890 MPa and 398 MPa with the addition of 15 % and 30 % wt. of white ash, respectively. Similarly, 
the modulus decreased to 1266 MPa and 580 MPa at 15 % and 30 % of tzalam in RM biocomposites. These 
results can be related to the wood-PLA incompatibility, lower density, and the limited wettability of the wood 
particles with the PLA due to the absence of pressure in the rotational molding process (Table 1).  On the other 
hand, for CM samples at 40 ºC, the neat PLA had a storage modulus of 1445 MPa, similar to the RM PLA. 
Nevertheless, the storage moduli of CM biocomposites were very different from those observed in rotational 
molding. For instance, the white ash biocomposites storage modulus remained around 1400 MPa, but for 15 
% wt. tzalam biocomposite, the storage modulus increased to 1600 MPa (11 % higher than neat PLA). Only at 
30 % wt. tzalam, the value decreased to 1100 MPa, probably because at this high wood content once again the 
state of dispersion and low wood-matrix adhesion played a more important role.

When the effect of thermal annealing over the storage modulus was analyzed, it was found that at 40 
ºC (i.e., below Tg), this property slightly decreased in all CM composites. Similar behavior was reported in 
Pérez-Fonseca et al. (2016) for injection molded PLA and its agave biocomposites. However, an opposite trend 
occurred for RM samples: the storage modulus increased by up to 45 % after thermal annealing. Additionally, 
it was observed that the significant storage modulus drop above Tg was almost eliminated by the thermal treat-
ment for all the materials. The same behavior was reported by Mathew et al. (2006), Auras et al. (2010), Way et 
al. (2013), and Pérez-Fonseca et al. (2016). Therefore, this increase of storage modulus between 60 ºC and 80 
ºC for the PLA and its biocomposites may imply an improvement in their thermal stability, opening potential 
applications at relatively higher temperatures (larger service window).
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Figure 3: Storage modulus of rotomolded (a), (b), (c) and compression-molded (d), (e), (f) PLA and 
PLA/wood biocomposites (U: untreated; T: treated).

Charpy impact strength

Figure 4 shows the effect of thermal annealing on the impact strength of PLA and its biocomposites. The 
neat PLA had a value of 26 J/m for both RM and CM samples since the processing method did not produce 
significant density changes in the neat PLA. However, the incorporation of wood particles to rotomolded 
PLA reduced the impact strength to 20 J/m and 17 J/m for the white ash and tzalam biocomposites. For the 
compression-molded samples, the biocomposites’ impact strength was similar to the neat PLA with 27 J/m 
and 24 J/m for 30 % wt. white ash and tzalam. This lower impact strength in RM samples has been previously 
reported by Cisneros-López et al. (2018) and González-López et al. (2019). It was related to a combination 
of poor interfacial stress transfer due to the wood/PLA incompatibility and higher porosity/lower density of 
rotomolded biocomposites than compression molded ones. The effect of thermal annealing was higher for the 
neat PLA, showing an impact strength increase of 142 % and 111 % (63 J/m and 55 J/m) for RM and CM neat 
PLA. This improvement can be related to increased crystallinity achieved by the thermal treatment (Perego et 
al. 1996, Pérez-Fonseca et al. 2016).
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Figure 4: (a) Impact strength of rotomolded and (b) compression-molded PLA and PLA/wood  
biocomposites (WA: white ash; TZ: tzalam).

Thermal annealing increased the impact strength of the CM white ash biocomposites. In this case, the 
impact strength increased to 50 J/m and 44 J/m at 15 % and 30 % wt. of particle contents, respectively. Simi-
larly, the CM tzalam biocomposites’ impact strength increased to 44 J/m at 15 % wt., while no variation was 
observed at 30 % wt. The different behavior between both types of wood can be related to their chemical com-
position and interaction with the matrix (PLA). Tzalam has a higher extractables content (24 %) than white ash 
(15 %) (Pickering 2008, Rodríguez-Jiménez et al. 2019), which non-polar components help the interaction/
adhesion with the PLA matrix (Mohanty et al. 2005). In the case of impact strength, the poor interfacial adhe-
sion between the biopolymer and the wood particles makes the fracture path longer, increasing the absorbed 
energy (Martín del Campo et al. 2020).

The effect of thermal annealing on the RM biocomposites was similar to those of CM samples. Neverthe-
less, the impact strength increase was lower because of the higher porosity in RM biocomposites. Although 
the neat PLA achieved the highest impact strength with thermal annealing, the biocomposites with thermal 
annealing still achieved better properties than the untreated neat PLA.

Tensile and flexural properties

Tensile and flexural results are presented in Table 3. Tensile modulus of CM samples showed that wood ad-
dition caused an increase of 15 % and 25 % for 30 % wt. white ash and tzalam biocomposites, associated with 
wood particles’ high stiffness (Pérez-Fonseca et al. 2015). However, in RM samples, the wood particles caused 
a decrease in tensile modulus, once again due to low particle dispersion, agglomeration, and lower density. 
Similar behavior was observed in flexural modulus results for both CM and RM samples. Even when it is well 
known that natural fibers possess high flexural modulus, the low wood/matrix compatibility, and the particle 
agglomeration can decrease this property in composites materials (Pérez-Fonseca et al. 2015, Robledo-Ortíz 
et al. 2021). The thermal annealing treatment did not significantly affect the tensile and flexural modulus since 
the biocomposites’ values are similar to those of the untreated materials.

It was expected that tensile and flexural strengths were reduced with the addition of both kinds of wood 
since no coupling agent was used, which produced materials with lower density than neat PLA (Martín del 
Campo et al. 2020). Tensile and flexural strengths of neat PLA were 40 MPa and 80 MPa and decreased to 25 
MPa and 50 MPa for the biocomposites.  Thermal annealing caused decreases in tensile and flexural strengths. 
As mentioned, when materials are subjected to thermal treatments, recrystallization occurs, producing an in-
crease in stiffness. This effect has been previously reported in Pérez-Fonseca et al. (2016). 
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Table 3: Flexural and tensile properties, and water absorption of PLA and its biocomposites produced by 
compression and rotational molding before and after thermal annealing (WA: white ash; TZ: tzalam).

 

*All are average values with less than 10 % of standard deviation.

However, it is important to mention that even when it was found a significant decrease in flexural and 
tensile strength, the values are still competitive with those of polyethylene (flexural strength = 23 MPa, tensile 
strength 21 MPa), which is the most used polymer for rotomolding processes (95 % of the worldwide roto-
molded parts) (Robledo-Ortíz et al. 2021).

Water absorption and accelerated weathering

Water absorption results are also shown in Table 3. The equilibrium in the water absorption was reached 
at 672 h or less. The maximum water absorption of pure PLA was around 0,6 % before thermal treatment and 
0,4 % after the treatment regardless of the processing method. The slight difference in the treated PLA can be 
associated with the polymer chains’ rearrangement during the recrystallization. As expected, the materials’ hy-
drophilicity increased by adding both kinds of wood due to the high amounts of hydroxyl groups, being more 
evident at 30 % wt. of wood particles. 

However, tzalam biocomposites absorbed less water than white ash biocomposites. This behavior is  
related to the different chemical compositions, especially with the higher non-polar extractables content in 
tzalam, making it less hydrophilic (Metsä-Kortelainen et al. 2006). Due to the absence of shear stresses during 
rotomolding, the blending of the components is not optimal, causing the formation of gaps that ease the water 
diffusion into the biocomposite. This behavior was clear in biocomposites with 30 % wt. of wood particles, 
e.g., compression-molded 30 % WA biocomposites had a water absorption of 14 %, while the same material 
but prepared by rotomolding absorbed 28 % of water. Similar results were found with tzalam particles. The 
thermal annealing produced only small water absorption differences compared with untreated samples, once 
again related to the polymer chains’ rearrangement.

The behavior of PLA and its biocomposites was also studied under accelerated weathering to determine 
any changes in these materials’ long-term properties. This information would be useful to increase their 
range of applications and their lifetime (Gunjal et al. 2020, González-López et al. 2020). Regardless of the  
processing method, the materials that were not subjected to thermal annealing presented significant changes 
in their dimensional stability after accelerated weathering. Figure 5 shows typical examples of these modifica-
tions, especially buckling in the biocomposites. This buckling of untreated samples is due to the softening of 
the PLA matrix around 60 ºC as previously discussed via DMTA (Figure 3). The thermal annealing was very 
efficient at increasing the crystallinity (Table 2) and the stiffness (Figure 3), thus improving the dimensional 
stability as temperature increases. Similar behavior was reported by Sawpan et al. (2019), where they observed 
deformation in their PLA samples after 768 h of accelerated weathering. 
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Figure 5: Dimensional stability of neat PLA and its biocomposites at 30 % wt. of white ash (WA) or tzalam 
(TZ) content (T: treated; U: untreated).

However, they reported that this buckling did not occur in the biocomposites because of hemp fibers ad-
dition. This difference in the dimensional stability of the PLA biocomposites can also be related to the charac-
teristics of the lignocellulosic reinforcements, such as fiber dimensions and their aspect ratio (L/D), which is 
much higher for hemp fibers (>10) than for our white ash (3,1) and tzalam (2,7) particles.

Table 4 reports the crystallinity (Xc) of the materials after being exposed to accelerated weathering, where 
important changes were observed. It was found that the crystallinity of untreated PLA increased up to 38 % 
for either RM or CM; meanwhile, all the untreated biocomposites reach Xc, similar to those observed for the 
treated biocomposites (around 50 %). It has been reported that the conditions inside the weathering machines 
(humidity and temperatures around 50 ºC to 60 ºC) can lead to a reorganization of the PLA chains inducing 
cold crystallization (Sawpan et al. 2019). Also, Yatigala et al. (2018) reported that UV degradation mainly 
affects the amorphous regions of PLA so that crosslinking can occur in the imperfect crystalline regions and, 
consequently, increase its crystallinity.

Table 4: Crystallinity of PLA and its biocomposites before and after accelerated weathering 

 

WA: white ash; TZ: tzalam; U: untreated; T: treated.

Figure 6 presents the DMTA results of PLA before and after accelerated weathering. The significant drop 
of around 60 ºC for the untreated PLA was more limited after weathering. This change was attributed to the 
increased crystallinity due to thermal annealing during weathering, which made PLA more stable and able to 
sustain higher temperatures. On the other hand, slight storage modulus decreases were observed for treated RM 
and CM PLA after weathering, which can be related to photo and hydrolytic degradation of PLA (Kaynak and 
Sari 2016). Moreover, no significant changes were observed below Tg, indicating that the weathering influence 
was mainly on the crystallization of the PLA amorphous region.
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Figure 6: Storage modulus of rotomolded (a) and compression-molded (b) PLA before and after accelerated 
weathering (U: untreated; T: treated; W: weathered).

Similar DMA results to those of the neat PLA were observed for the RM (Figure 7) and CM (Figure 8) 
biocomposites after accelerated weathering. The untreated samples did not show significant softening around 
60 ºC, once again due to a thermal annealing process occurring during weathering. However, considerable 
storage modulus losses due to weathering were observed below Tg for the untreated RM biocomposites, as well 
as for the complete curve for treated ones. For 30 % wt. of wood content at 50 ºC, the storage modulus of un-
treated RM biocomposites decreased from 395 MPa to 238 MPa for white ash and from 648 MPa to 262 MPa 
for tzalam, while for the treated RM biocomposites, the values were from 406 MPa to 246 MPa for white ash 
and 529 MPa to 258 MPa for tzalam. As expected, the biocomposites produced by compression molding have 
better resistance to the accelerated weathering conditions showing lower storage modulus decreases and more 
similarity to the neat PLA. This behavior can be related to the higher porosity, lower wood particle dispersion, 
and lower density of RM biocomposites that made water penetration more accessible, i.e., higher water absorp-
tion (as observed in Table 3) and possible swelling effect during weathering, promoting the hydrolysis of PLA 
chains (Islam et al. 2010). Niemczyk et al. (2019) also reported that particle agglomeration could accelerate 
polymer degradation due to many structural defects facilitating the oxygen permeability between the polymer 
chains. Nevertheless, it is important to notice that, in general, the treated biocomposites showed higher storage 
modulus after accelerated weathering, confirming their better dimensional and thermo-mechanical stability.

Figure 7: Storage modulus of white ash (a), (b) and tzalam (c), (d) rotomolded biocomposites before and 
after accelerated weathering (U: untreated; T: treated; W: weathered).
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Figure 8: Storage modulus of white ash (a), (b) and tzalam (c), (d) compression-molded biocomposites be-
fore and after accelerated weathering (U: untreated; T: treated; W: weathered).

The results of impact strength before and after accelerated weathering are shown in Figure 9.  Despite the 
processing method, it can be seen that the impact strength of untreated PLA and the untreated biocomposites 
did not significantly change after accelerated weathering. The latter could be related to a balance between the 
increased crystallinity produced by  thermal annealing during weathering and polymer/fiber degradation. On 
the other hand, these crystallinity increases were not observed in treated PLA and treated biocomposites (Table 
4), which showed important impact strength loss after weathering. This behavior suggests that polymer/fiber 
degradation is the main process during the accelerated weathering of treated samples. Nevertheless, lower de-
creases were observed at higher wood contents, which was related to the fact that the thermal annealing effect 
was less important under these conditions. However, limited impact strength changes after weathering between 
materials with and without thermal treatment are observed, which can be acceptable in terms of dimensional 
and thermo-mechanical stability of treated materials.

Figure 9: Impact strength of rotomolded (a) and compression-molded (b) PLA and PLA/wood  
biocomposites before and after accelerated weathering (WA: white ash; TZ: tzalam; U: untreated; T: treated).

CONCLUSIONS

The thermal annealing and wood addition (tzalam or white ash) are excellent options to enhance the crys-
tallinity and impact strength, as well as the thermal and dimensional stability of PLA produced by rotational 
(RM) and compression (CM) molding. In general, higher crystallinity and mechanical properties were ob-
tained for CM biocomposites than RM biocomposites, especially at high fiber content due to better compaction 
(higher density and lower defects and porosity). 

The optimum thermal treatment was at 100 ºC for 40 min to maximize crystallinity for neat PLA. 
The thermal annealing enabled the PLA and PLA/wood biocomposites to have better thermo-mechanical  
stability at higher temperatures (especially above Tg). Since PLA is a brittle material, higher impact strength was 
necessary for a wider range of applications. This improvement in impact strength was successfully achieved 
by the thermal annealing treatment as the values improved by 142 % and 111 % for RM and CM neat PLA, 
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respectively. Samples subjected to accelerated weathering and thermal annealing had enhanced dimensional 
stability by restraining buckling during weathering under the conditions tested.

Overall, it can be concluded that wood particle addition and thermal annealing are easy strategies to pro-
duced biodegradable composite materials with competitive mechanical properties, reducing costs, which may 
increase their possible industrial and commercial applications.
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