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ABSTRACT

The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is 
essential to control, commercialization, and supervision of its production in Brazil. The main contribution 
of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We 
applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on 
contrast enhancement and data augmentation with rotation over the training set images. on the performance of 
the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The 
results pointed out that our method provides new perspectives to identify the charcoal origin, achieving 
results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing 
strategies. 
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INTRODUCTION

Brazil is one of the largest charcoal producers, with a reaching 5,3 million tons in 2019 (Ministry of 
Mines and Energy 2020). Besides being a world producer, Brazil is also one of the largest consumers of 
charcoal. Most of this production is destined for the internal market, mainly for the pig-iron and steel sectors 
and lesser, for the ferroalloy sector and residential consumption (ABRAF 2013). However, this demand is 
not supplied through charcoal using planted forests, making the illegal exploitation of native forests 
attractive.

In order to try to prevent this illegal production, the Ministry of the Environment, through Ordinance No. 
253/2006, established the Forest Origin Document (DOF), an obligatory license for the transportation and 

1Federal University of Viçosa, Department of Forest Engineering, Viçosa, MG, Brazil.
2Federal University of Viçosa, Institute of Exact and Technological Sciences, Rio Paranaíba, MG, Brazil. 
3Federal University of São Carlos, Department of Computer Science, São Carlos, SP, Brazil. 
4DAP Florestal, Centro Empresarial da Serra. Parque Res. de Laranjeiras, Serra, ES, Brazil. 
♠Corresponding author:  ricardo.rodrigues@ufv.br
Received: 20.02.2020 Accepted: 04.08.2021



Maderas. Ciencia y tecnología 2021 (23): 65, 1-12 Universidad del Bío-Bío

2

storage of forest products and by-products, that includes information about the origin of those products. This 
li-cense expired in cases when the transported product does not correspond to the species authorized in the 
DOF. In this context, forensic identification is used in the analysis of the preserved wood in charcoal to 
determine his origin (Gonçalves et al. 2012, Nisgoski et al. 2014), i.e., to distinguish those produced with 
native forests from those from planted forests, mainly composed of species of Eucalyptus (Davrieux et al. 
2010). The principal clones used to produce charcoal are Eucalyptus urophylla, E. grandis, and hybrids E. 
urophylla x grandis, E. urophylla x camaldulensis, and E. grandis x camaldulensis (Santos 2010, Pereira et 
al. 2012).

Usually, the anatomic analysis of charcoal can be done through a macro or microscopic approach. In the 
microscopic identification is observed features of the tissues and the constituent cells of the wood (Zenid and 
Ceccantini 2012), while in macroscopic analysis, only anatomical features visible to the naked eye or with a 
magnifying glass, such as vessel arrangement and grouping, arrangement and abundance of axial 
parenchyma and ray width (Wheeler and Baas 1998). Both analyses can be used in the distinction between 
Eucalyptus and other genera.

Much has been proposed on the microscopic analysis, as reported in the studies proposed by Gonçalves et 
al. 2012, Albuquerque (2012) and Muñiz et al. (2012), with higher cost and limited logistics, can identify the 
charcoal to the level of species with trustable results, although this is not always necessary for charcoal 
iden-tification for supervision purpose. On the other hand, just a few studies have been proposed the 
macroscopic analysis to distinguish the origin of charcoal, although it allows agility and practicality. The 
genus Eucalyptus present a homogeneous anatomical constitution among the species, under the 
morphological level, a factor that hinders the separation, based only on the composition and 
structural arrangement of the wood constituents (Tomazello-Filho 1985, Oliveira 1997). This similarity 
can help in distinguishing this genus from the others.

Digital image process and machine learning techniques are essential to this task because it allows 
the acquisition of visual features for the automatic classification. Some studies proposed to classify 
charcoal  images with a non-automated user-based process. Khalid et al. (2008) proposed a method based on 
analysis of anatomical images of the transverse plane in order to differentiate charcoals of the genus 
Eucalyptus sp. from charcoal of native species. Andrade et al. (2019) proposed a system of classification of 
the origin of the char-coal using analysis of texture in digital images of the cross-section plane. For this, a 
database was produced containing 900 images of 18 species, 12 native and 6 of the genus Eucalyptus sp. 
After, texture features were extracted from each image using Level Co-occurrence Matrices (GLCM) 
(Haralick et al. 1973), which were used in training and in the evaluation of statistical classifiers that 
identified the origin of the charcoals correctly in about 97 % of the attempts.

However, the previously cited works do not add much to the identification of the origin of the charcoal in 
the field, due to the subjective, expensive logistic limitation imposed by the use of microscopes and 
the preparation of the material. The computational resources advances have allowed deep learning approach 
out-performs techniques based on handcrafted feature extraction on several fields such as computer-aided 
medical diagnosis systems (Litjens et al. 2017, Rodrigues et al. 2020), remote sensing (Nogueira et al. 2017, 
Zhu et al. 2017), forest species recognition (Hafemann et al. 2014), identification of ecosystems (Morales et 
al. 2018, Bayr and Puschmann 2019), agriculture (Kamilaris and Prenafeta-Boldú  2018, Knoll et al. 2018), 
and other applications (Gu et al. 2018).

Recently, Maruyama et al. (2018) proposed a method for automatic classification of native species 
of charcoal based on deep learning using Inception-V3 architecture (Szegedy et al. 2016) as a feature 
extractor. However, it was considered microscopy images, and these experiments performed a simple 
holdout validation technique (Devijver and Kittler 1982), which can randomly create biased sets, causing 
the CNNs to fit non-rep-resentative (abnormal) samples and result in unexpected accuracies. Differently, we 
considered the VGG-16 architecture (Simonyan and Zisserman 2014) instead of Inception-V3. The VGG-16 
network was chosen due to its simplicity and robustness. Moreover, it was the first architecture to replace the 
filters that require more computational power, by large sequences of convolutional filters with size 3x3.

In this work, we study an efficient method for automatic identification of charcoal origin based on deep 
learning and cross-validation k-fold technique using macroscopic images. This is the first work to classify 
au-tomatically in order to distinguish Eucalyptus and native species using the VGG-16 architecture. Also, 
prepro-cessing strategies based on contrast enhancement, data centralization, and data augmentation on the 
rotation of the training set images were tested to increase the performance of the CNN with fine-tuning.
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MATERIAL AND METHODS

The experiment was performed on a machine with an Intel i5 3,00 GHz processor, 16 GB RAM, and a 
GPU NVIDIA GeForce GTX 1050Ti with 4 GB memory. All experiments were programmed using Python 
3.6, the PyTorch 1.7 deep learning framework (Paske et al. 2019) under CUDA version 10.1 (2019) and 
cuDNN 7.6 (2020). The operating system was Ubuntu 18.04.5 LTS.

Images acquisition

The dataset of macroscopic images of charcoal was acquired from Wood Panel and Energy 
Laboratory (LAPEM) at the Federal University of Viçosa (UFV), Brazil. The material is composed of 
samples of car-bonized wood of Eucalyptus and native species typical of the region of Zona da Mata, Minas 
Gerais. Native species were chosen based on the anatomical similarity to the genus Eucalyptus as well as 
their attractiveness to the illegal production of charcoal. Eucalyptus species were chosen from those 
predominantly used for the production of charcoal, as Pereira et al. (2012) define.

In this dataset, each species or hybrid is represented by a sample coming from a single tree, without 
infor-mation of age or position of the trunk. The samples were charred in a muffle-type electric furnace, 
following an initial temperature of 150 ºC, with an increase of 50 ºC per hour, and the final temperature of 
450 ºC, totaling 7 hours of carbonization. The condensable gases were collected in a condenser coupled to 
the muffle door. The species and hybrids used in this study and the numbers of samples for each species are 
presented in Table 1.

Table 1: Species and hybrids used.
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The images were acquired using equipment with led light illumination and support for a cell 
phone,  generating images with 12 megapixels and optical zoom of 20 times. As the charcoal pieces were 
broken, and not cut, there was a large amount of non-flat surfaces. With this zoom, a larger area in which 
there are no irregular breaks on the surface of the charcoal (that made it difficult to analyze the distribution 
of cellular components) could be analyzed. 

The dataset is composed of 360 charcoal images, in which 135 images are of Eucalyp-
tus species, and 225 images of native species. An expert in wood anatomy analyzed the char-
coal images classified them as Eucalyptus and native. To illustrate them, Table 2 shows informa-
tion about name, quantity, and one image from each class. All images of charcoal dataset were 
categorized into two classes properly labeled: eucalyptus (135 images), and native (225 images). After, 
all images of the charcoal data set were randomly sampled and partitioned into five stratified sets (folds). 

Table 2: Information about each class in the dataset.

Image preprocessing

All images were resized to 224 x 224 pixels, size allowed for the input of the CNN architecture used in this 
work. Then was applied one of the preprocessing methods and used to train and test the VGG-16 architecture. 

Figure 1 shows samples of charcoal images considering each preprocessing strategy evaluated. 
The  original image from the dataset is defined as a strategy (a) (i.e., no preprocessing).  In (b), there is an 
example of contrast stretching strategy.

Figure 1: Contrast improvement applied in charcoal image: (a) original image (i.e. without preprocessing); 
(b) contrast stretching. Image instances from the charcoal dataset showing Eucalyptus (top) and native  

(bottom) classes.

Data augmentation

Data augmentation is a strategy that consists of increase the training data without increasing the number 
of samples (Krizhevsky et al. 2012). In this study, we applied data augmentation based on rotations of the 
images considering angles of between 0 º and 360 º with steps of 45 º, increasing the training set in 8 times.

Convolutional neural networks

The main concepts addressed in the Deep Learning paradigm were obtained from Neural Networks, 
which aims to develop computer programs capable of solving problems that are difficult to solve through 
formal rules (Goodfellow et al. 2016). The main characteristic of a Convolutional Neural Network (CNN) is 
to be com-posed mainly of convolutional layers, and its main application is the processing of visual 
information (Ponti et al. 2017). A CNN consists of three types of neural layers, described below (Guo et al. 
2016).
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Convolutional

The convolutional layer is generated through a set of filters over an input image. Each filter is responsible 
for detecting a specific type of feature. Figure 2 illustrates the basic structure of the convolutional layer define 
by Cl  and composed by l

kW  filters with size of the spatial stent and the hyper-parameter from the input  
volume  1lM − . Finally, the convolution result is added to the bias b, generating  K 2D feature maps stacked 
in an output volume  Ml, defined by Equation 1 (Rodrigues et al. 2020).

1
1

Dl l l l
k d d kd

M M W b−

=
= +∑ (1)

Figure 2: Illustration of the convolutional layer.

Pooling

The pooling layer allows reducing the size of feature maps considering maximum or average pooling. The 
CNN architecture considered in this paper applies maximum pooling because this criterion results in better 
generalization and faster convergence (Scherer et al. 2010). Figure 3 illustrates the maximum and average 
pooling considering a pooling layer with size 2 x 2.

Figure 3: Illustration of the pooling layer and the computations to maximum and average pooling.
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Fully connected

The fully connected layer is present in the last layers and converted the two-dimensional feature maps 
into a one-dimensional feature vector. Finally, the last layer is composed of softmax with neurons representing 
the number of classes in the dataset. Figure 4 illustrates the fully-connected layers after the convolutional and 
pooling layers and the softmax layer.

Figure 4: Illustration of the structure of fully-connected layers and softmax layer.

Training based on ine-tuning

The training strategy based on fine-tuning it is a practical and common approach for training deep 
learning architectures (Goodfellow et al. 2016). The network is previously trained for a classification task 
using a very large data set (Deng et al. 2009). The parameters values (weights) learned for the initial layers 
of the network are kept (frozen), and the top layers trained over the data set of interest, which are intended to 
learn the more complex structures of the data.

VGG-16 architecture

The VGG-16 network, which is composed of 13 convolutional layers, five pooling layers, and 
three  fully-connected (considering the softmax)(Simonyan and Zisserman 2014), was chosen due to its 
simplicity and robustness. In this study, we evaluated the VGG-16 improved with batch normalization. 
This strategy maintains the mean output close to 0 and the output standard deviation close to 1, increasing 
stability across the network and leading to a faster learning rate (Ioffe and Szegedy 2015).

We keep fixed all convolutional layers blocks to maintain the parameters learned from training over the 
ImageNet dataset, while the top layers have their parameters adjusted using a small learning rate. Figure 
5 illustrates the VGG-16, and the blue box indicates the fixed layers.

Figure 5: VGG-16 architecture. Blue box indicates the blocks of convolutional layers fixed during training 
based on fine-tuning.
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The training of the VGG-16 is defined as an optimization problem to improve the quality of prediction. 
In this study, we considered the loss function as the objective function. The loss function used was 
binary cross-entropy function, commonly used for binary classification problems.  In this way, we 
minimize this function using the Stochastic Gradient Descent (SGD) optimizer (Lecun et al. 1998), a 
popular optimization algorithm for parameter optimization of machine learning and deep learning models. It 
is based on a gradient descendent approximation using batches of randomly selected data samples instead of 
computing the gradient for each object of the dataset. Thus, the SGD optimizer allows finding iteratively 
the parameter values that minimize the loss function (cross-entropy) (Goodfellow et al. 2016). 

VGG-16 was trained with a learning rate of 0,001, weight decay of 1e-6 , a momentum of 0,9 momentum 
Nesterov, mini-batch size of 32, REctified Linear Unit (RELU) function, and training considering 100 epochs. 

Validation

The validation of the classification is performed using k-fold cross-validation (Kohavi 1995) 
statistical method, which partition the data into k folds used for training and test. All images were sampled 
and parti-tioned into five stratified sets, i.e., the folds are build preserving (approximately) the proportion of 
examples for each class of the original set. We repeated the cross-validation five times, and for each iteration, 
one of the training folds is chosen for validation and the others for training.

Additionally, the mean value of accuracy (Equation 2) is used to quantify the quality of the results. The 
accuracy index is based on the number of true positives (TP), true negatives (TN), false positives (FP) and 
false negative (FN), computed from the confusion matrix, that allows verifying the number of correct 
classifications as opposed to the classifications predicted for each class (Duda et al. 2000).

TP TNAccuracy
TP TN FP FN

+
=

+ + +
     (2)

Also, to visualize the True Positive Rate (TPR) against the False Positive Rate (FPR) at various decision 
thresholds, it was considered the Receiver Operating Characteristic (ROC). The Area Under ROC (AUC) is 
used as a reliable classification performance measure of all possible classification thresholds (Fawcett 2006).

Figure 6: Approach proposed.

RESULTS AND DISCUSSION

We trained the VGG-16 architecture considering each contrast improvement strategy and average 
sub-traction. Figure 7 shows the evolution of the loss values and accuracy’s for the considering the average 
of all k-fold iterations for each preprocessing strategy evaluated.  This behavior result suggests that the 
training did not overfit the data and maintaining the generalization property of the CNN.
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Figure 7: Evolution of accuracy values and loss values for each fold and each strategy evaluated 

In order to assess the values of True Positive Rate (TPR) against the False Positive Rate (FPR) we ana-
lyzed the ROC (AUC) for each iteration of the k-fold. The evolution of these values is shown graphically in 
Figure 8. It is important to note that an AUC upper of 80% for most of the folds results in an average AUC 
of 84% and 81,6% for original and contrast stretching, respectively. Also, this result suggests that our 
approach is a promising method.

Figure 8: ROC curves for each fold.

The mean accuracy resulted from VGG-16 is presented in Table 3, considering each preprocessing strategy 
evaluated. The use of the original images is the best choice, resulting in a mean accuracy of 85,8%. The data 
centralization performed by average image subtraction has a positive impact, independently of preprocessing.

Table 3: Average test accuracy for each preprocessing strategy 

evaluated using VGG-16 architecture.

The confusion matrices (Table 4) allow observing some aspect of the classification problem investigated 
in this work. The presented values were obtained for training with the whole training set and prediction over 
the validation set (which is the 3rd fold). It is worth noticing that the charcoal from native wood is rarely mis-
classified as eucalyptus, which is the main objective of this research, i.e., to provide a computational method 
capable of preventing the exploitation of native wood. Although the best overall result was obtained with the 
original images without preprocessing, it is possible to see that contrast widening allowed the identification of 
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97,78 % of native woods when fold-3 is considered. 

Figure 9 shows samples of native images classified as Eucalyptus for each strategy tested. Although the 
goal is to perform a binary classification, we found that native species with few samples in the database such 
as Cydonia oblonga Mill, Inga edulis, Prosopis juliflora, and Sclerolobium paniculatum may be classified as 
Eucalyptus. Therefore, a small number of samples of these species results in a lack of visual patterns. Also, 
we observed that the other native species misclassified presents visual patterns similar to Eucalyptus, like an 
increase in the thickness and distribution of the vessels in the center - bark direction (de Jesus and Silva 
2020).

Table 4: Confusion Matrix of the best result for each preprocessing strategy.

Figure 9: Examples of native images classified as Eucalyptus for each strategy evaluated. 

CONCLUSIONS

The results allow concluding that, for the classification of charcoal images, the VGG-16 architecture ob-
tained better results when the augmented data set is analyzed considering the average subtraction as prepro-
cessing strategy (values lying on 85,8 %, in terms of accuracy). Also, after learning the particular features, 
the VGG-16 architecture resulted from the proposed method was able to classify charcoal from native 
forests, at least, 95 % mean accuracy using original images, i.e., without preprocessing strategy, and 
considering the 5-fold cross-validation procedure.

The presented results open new opportunities towards better exploiting deep learning for 
automatic classification between charcoal produced from planted wood (Eucalyptus), and those originated 
from native  forests. As for future work, other data augmentation strategies may be tested, together with other 
normalization  strategies and different types of convolutional neural networks.
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