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Abstract: 

Although optimization models can be used to plan the production process, in most cases static 

heuristics, such as earliest due date (E), longest processing time (L), and shortest processing 

time (S), are used because of their simplicity. This study aims to analyze the production cost 

of the static heuristics and to determine how this cost relates to the size of the production 

orders in the sawmilling industry. We set a planning problem with different orders and due 

dates and solved it using two cost-minimization models to compare their solutions. The first 

was a planning model (PL) where orders were split up into products demand by period, and 

the second, a planning scheduling (PS) where the sequence of processing orders based on 

static heuristics was assumed as known. In the latter, the minimum production cost for each 

static heuristic was found. In both models, the same resource constraints were assumed. The 

costs showed no significant changes based on order sizes. However, 0,5 % of orders were 

delayed using PS-E, and 17 % of orders were delayed using PL. PL was an efficient solution 

method when changing the orders´ size and when looking for the best static heuristic to 

process the orders. However, PS-E showed the ability to reduce the backlog close to zero 

while the PL backlog ratio was 17 %. No penalties were applied to backlogs due to their 

subjective nature; however, when shortages occurred, the demand was unmet or backlogged 

with substantial costs. Thus, in case the proposed method is adopted using a conservative 

backlog cost, a sawmill producing under the cut-to-order environment that produces 300000 

m3 /year would reduce backlogged orders by 51000 m3. If the holding lumber cost is 2 $/m3, 

annual savings would be $408000. 
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Introduction 

 

 

In the year 2020, the forest industry emerged as one of the key pillars of the Chilean economy, 

contributing 2,1% to the national GDP. Forty percent of all industrial roundwood was used 

in sawmills, with a similar percentage allocated to pulpwood and paper production. The 

remaining portion was used in the manufacturing of lumber, panels, and other products, many 

of which were exported. Chilean forest companies exhibit a high level of integration, 

encompassing operations in forestry, cellulose, paper, lumber, plywood, and energy 

production. Nevertheless, there has been a growing focus on lumber production, driven by 

the need to address significant efficiency gaps.  

In most large sawmills in Chile, the planner faces the task of balancing the utilization of logs. 

This involves assigning sawing patterns to logs to meet orders deadlines while ensuring a 

certain performance threshold regardless of its impact on production costs. Unfortunately, 

these performance thresholds often clash with the efficient utilization of capacity. For 

instance, this conflict arises when scheduling small batches for numerous orders without 

considering setup costs. Conversely, scheduling large batches for a few orders prioritizes 

maximum productivity. This paper seeks to quantify the impact of static heuristics for 

scheduling, widely employed by sawmill planners, and the influence of lumber batch size on 

production costs. The objective is to identify the production setting in which static heuristics 

outperform others. This section begins with a literature review, highlighting gaps in existing 

research, and establishes the research objectives. 



 

 

Lumber planning is based on a balance between timber supply and lumber demand. Sawmills 

that process timber from natural forests typically employ the cut-to-stock approach, whereas 

those processing timber from plantations favor the cut-to-order approach (Vanzetti et al. 

2018, Marier et al. 2014). The Operational Lumber Planning Problem (OLPP) can be 

categorized as both a lot sizing and scheduling problem, determining when orders should be 

fulfilled while taking capacity into account to minimize backlog and inventory costs.  

The OLPP has been approached through Mixed Integer Programming (MIP) formulations, 

heuristics methods, and hybrid approaches that combine the strengths of both. MIP models 

play a crucial role in minimizing the costs associated with raw materials, inventory, and 

backlog while adhering to available capacity constraints (Clark 2003). However, scheduling 

presents challenges due to sequence-dependent setups, where each machine's setup time for 

a task is influenced by both the current job and the previous job for which the machine is 

setup. Additionally, multiple setups occur within a planning period. As a result, the MIP 

model for lot sizing and scheduling involves numerous binary variables, leading to 

computational intractability. While exact formulations produce high-quality solutions, they 

often come with impractical solution times. To overcome this complexity, a strategy involves 

relaxing the binary variables and constraints, breaking down the problem into smaller 

components to determine lot size, and establishing a sequence of lot setups (de Araujo et al. 

2007 and Clark 2003).  

Maness and Adams 1991, followed by Maness and Norton 2002, conducted early research 

on lumber planning and scheduling. The MIP model they developed aimed to maximize 

revenues by generating a bucking-sawing pattern and selecting the mix of logs to meet sales 

demand. This approach is suitable when backorders and inventories are allowed. 



 

 

Sawmills commonly use MIP models with a focus on either volume or value. However, if 

dynamic prices can be applied and updated during sawing operations, optimized plans can 

yield more accurate plans resulting in using fewer logs (Todoroki and Ronnqvist 2010).  

Adopting a cut-to-order environment, where logs are sorted by diameter and processed in 

batches, has improved the results of the OLPP through timber transfer decisions among plants 

within a supply chain context (Singer and Donoso 2007). A heuristic approach mimicking 

planner schedulers and a MIP model were developed and benchmarked by Huka and Gronalt 

2017. The MIP model outperforms the heuristics, however, when applying the MIP model in 

a rolling planning horizon, the best heuristic outperforms it owing to the end effects included 

in the model. 

An alternative approach was undertaken by Dumetz et al. 2019. A simulation planning 

method simulated the arrival of new orders, demand, capacity, inventories, rolling planning 

horizon, and coordination mechanisms, resulting in an increased service level compared to 

centralized planning methods. 

Furthermore, Vergara et al. 2015 pointed out that the lumber planning problem has been 

tackled with conflicting objectives, where a solution optimized for one objective adversely 

affects another. To address this conflict, Broz et al. 2019 applied a Goal Programming 

formulation, balancing problem metrics to showcase the importance of reconciling decision-

makers' local objectives. Additionally, a model feature facilitating the planning of log 

transportation to the sawmill was introduced by Vanzetti et al. 2018. However, realistic 

modeling formulation in the cut-to-order environment discussed would have required the 

inclusion of slack variables and penalties.   

In a cut-to-stock environment, Wery et al. 2014 emphasized the challenges that arise when 

dealing with customized orders. They proposed a simulation-optimization sequential 



 

 

framework to evaluate how mill settings and the introduction of new log classes impact the 

sawmill products mix when customized products are added to the plan during the planning 

horizon. Furthermore, Ben Ali et al. 2019 outlined the advantages of integrating sales and 

operations planning and order promising based on revenue management concepts. Their MIP 

model determines sales decisions that maximizes profit while enhancing service levels for 

high-priority customer orders.  

In a cut-to-order environment, incorporating remanufacturing operations, Vanzetti et al. 2019 

developed a MIP model for day-ahead scheduling optimization. This model utilizes both self-

generated and data-based cutting patterns, emphasizing the advantage of generating all 

possible cutting patterns, which surpasses previous research efforts. 

To address the OLPP in a more general context, Kaltenbrunner et al. 2020 integrated existing 

approaches and evolving scenarios. They developed a modular, flexible, and generic 

planning method, with MIP model cases differing in demand fulfillment constraints, optimal 

use of raw material constraints, and the division of the planning horizon.  

While previous reviews have focused on MIP and heuristic methods, this research aims to 

quantify the impact of static scheduling heuristics on production costs. Therefore, a 

subsequent review of scheduling methods applicable to this initiative follows.  

Scheduling is typically conducted by shift leaders without considering cost consequences. A 

schedule arranges jobs in a specific order and determines their start and completion times 

(Maccarthy and Liu 1993). Operations Research (OR) methods can be employed to address 

scheduling problems, aligning with the production flow and production system. Different 

objective functions, indirect objectives, and metrics can be produced based on the problem 

scale, allowing for the determination of solution technique performance gaps (for further 

details, refer to Maccarthy and Liu 1993). While the optimal schedule serves as a 



 

 

performance measure, it is important to note that costs and profits cannot be directly linked 

to schedules. Indirect objectives, such as completion time, flow time, lateness, and tardiness 

are used instead (Sipper and Bulfin 1997).  

OR methods employed to tackle scheduling problems encompass optimal methods, 

enumerative optimal MIP methods, and heuristic methods, the latter involving a certain 

degree of closeness to polynomial time (Maccarthy and Liu 1993). Additionally, static 

heuristics offers optimal solutions for certain problems, and they are a function of the order 

data (Possani 2001). In fact, static heuristics prioritize jobs and schedules them based on a 

rule that recognizes the priorities of all the orders that are waiting to be processed on a 

machine. The Shortest Processing Time (SPT) static heuristic prioritizes jobs based on their 

processing times, while Earliest Due Dates (EDD) static heuristic prioritizes jobs based on 

their due dates. The Longest Processing Times (LPT) static heuristic organizes jobs in a 

sequence with non-increasing processing times. Unfortunately, neither SPT nor LPT 

considers due dates, as these static heuristics primarily focus on minimizing flow time (i.e., 

cost minimization). If customer satisfaction is a crucial factor, EDD is the preferred choice 

because it minimizes tardiness (Sipper and Bulfin 1997). 

Yaghubian et al. 2001 developed a model to address a dry kiln scheduling problem, a version 

of scheduling “n” jobs on “m” parallel machines. Jobs were assigned to kilns in accordance 

with their due dates, and the optimization problem revolved around allocating jobs to kilns. 

Each job was associated with demands (e.g., orders), and the due date was ensured by 

imposing a constraint that guaranteed the fulfillment of the last job on demand by the due 

date. 

Furthermore, Maturana et al. 2010 tackled the OLPP using a Linear Programming (LP) 

model and a heuristic approach that emulated planner decisions. They introduced log supply 



 

 

and demand perturbations. While the LP model proved to be faster than the heuristic 

approach for most scenario perturbations, it lacked explicit scheduling rules present in the 

heuristic method, such as LPT. In a similar vein, Pradenas et al. 2004 used a MIP model, 

benchmarking results with an artificial intelligence heuristic procedure based on a Tabu 

search algorithm, demonstrating promising performance when compared with an exact 

problem solution. 

Meanwhile, Marier et al. 2014 formulated MIP models to address the OLPP. The MIP model 

for scheduling batches of lumber was simplified by imposing the LPT sequence to process 

orders on machines rather than generating and testing many combinations of order schedules. 

This simplification aimed to reduce complexity and make the problem more tractable 

(Vanzetti et al. 2019).  

Although efforts have been made to address the OLPP, much of the research has prioritized 

the due date of orders over production cost. Limited attention has been given to understanding 

how static heuristics for scheduling can impact costs. This research quantifies the effect on 

cost when using static heuristics for scheduling lumber orders on sawmills. 

The following sections provide a methodology outlining the approach, model formulations, 

data utilized, and the comparison strategy. Subsequently, the results are presented and 

benchmarked against previous research, followed by a detailed discussion of findings and 

research limitations. We conclude with summaries of conclusions, implications, and study 

limitations. 

 

 

Materials and methods 



 

 

 

 

The methodology was designed to examine the impact of incorporating static heuristics, such 

as EDD, SPT, or LPT, in processing lumber production orders on cost, backlog, and overdue 

orders while solving the OLPP. The formulated models designed to address this problem are 

described, along with an explanation of how the demand for lumber products was utilized to 

generate various lumber demand scenarios. The subsequent section details the procedure for 

executing the models and elucidates how the problem data were input to explore variations 

in the problem.  

 

 

Problem setting 

 

 

The OLPP was configured with 10 log diameters, a library of 100 sawing patterns, 

sawmilling and anti-stain treatment processes, and 10 anti-stain lumber. The OLPP was 

approached using a lumber planning methodology, which is comparable to a lumber 

scheduling approach. For lumber planning, a timeframe of six periods, corresponding to 

weekdays, was employed. In contrast, the lumber scheduling approach utilized a period of 

138 hours, equivalent to 6 days of 23 hours each. Each order consisted of a set of 10 lumber 

products, and the volume of every order matched the demand for the lumber products that 

needed to be fulfilled within a specific period for the lumber planning problem. This volume 



 

 

equivalency was translated into an order with a due date specified in hours to be satisfied 

within the scheduling problem. 

 

 

Lumber manufacturing data 

 

 

The data set utilized in this study was sourced from a lumber manufacturing company in 

southern Chile. To uphold company confidentiality, certain aspects such as logs, labor, and 

inventory costs were adjusted, although they closely approximate actual figures. Log supply 

was assumed to be unlimited to prevent infeasibilities in the model due to log availability, 

and to maintain a focus on the impact of static heuristics rather than other factors (Singer and 

Donoso 2007, Maturana et al. 2010).  

An anti-stain process is incorporated into the lumber production of Radiata pine due to high 

proportion of sapwood, aiming to prevent fungal activity. Hence, sawing and anti-stain 

processes were considered as operations in this research. 

The initial demand for lumber products was defined as the average production that the library 

of sawing patterns could produce when utilizing the entire sawmill capacity. The demand 

was based on a sawmill with a capacity of consuming up to 111 m3 of logs per hour and 

producing up to 62 m3 per hour of lumber. These figures varied based on log distributions 

and the sawing pattern library. This assumption aligns with the current working conditions 

of the company and is consistent with the case study by Maturana et al. 2010. To assess the 

impact of static heuristic (sequences) on the OLPP, five lumber product demand scenarios 



 

 

were generated based on the initial lumber product demand. These scenarios focused on 

varying rates applied to the initial demand between periods and among lumber products, with 

thirty values generated for each scenario (Table 1). 

 

Table 1: Scenarios of lumber products demand. 

 

 

These five scenarios, each comprising 30 sets of lumber product demands organized by 

period or order, were fed into the models described in the next section, leading to a total of 

600 model runs. 

 

 



 

 

Decision-making model formulations 

 

 

Two planning and scheduling models, namely a multi-period planning model (PL) and a 

planning-scheduler model (PS) with 3 versions, were developed and performances were 

compared. The initial optimization model (PL) is a MIP model (PL) that was transformed 

into a single-period allocation of orders problem, referred to as planning-scheduler (PS). The 

PS includes three versions: a scheduling model with Earliest Due Date static heuristic (PS-

E), a scheduling model with Longest Processing Time static heuristic (PS-L), and a 

scheduling model with Shortest Processing Time static heuristic (PS-S). In the E static 

heuristic, orders are scheduled in ascending order of due dates. The S static heuristic involves 

sorting orders by increasing processing times. The L static heuristic schedules orders by 

decreasing processing times (Table 2). 

 

Table 2: Models’ description. 



 

 

 

 

In the PL model, the demand for lumber product must be fulfilled within a specific period of 

the planning horizon (i.e., days of the week). Although the formulation did not explicitly 

include due dates, demand was allocated to certain periods. Thus, the model implicitly 

ensured demand satisfaction within a period, equivalent to fulfilling an order containing a set 

of lumber product demands for a specific a due date (Equation 1 and Equation 2). 

 

1  _   _    , 1os os osV at IAT D at o s−+ =  =     (1) 



 

 

 

1  _ _   _    , 1os os os os osV at IAT IAT B at D at o s−+ − + =       (2) 

 

Where: 

o: Lumber product 

s: Planning periods 

_ :osV at Anti-stain treatment production (m3) of lumber product o in period s. 

_ :osB at Backlog volume (m3) of anti-stain treated lumber products o in period s. 

_ :osD at Demand for anti-stain lumber (m3) product o in period s. 

:osIAT  Anti-stained lumber inventory (m3) of product o in period s. 

 

∑ 𝑈𝑖,𝑗,𝑘,𝑝𝑖𝑗𝑘𝑝 × 𝑃𝑟𝑜𝑑_𝑠𝑤𝑖 + 𝐴1𝑝 − 𝐵1𝑝 − 𝑑 _ 𝑎 𝑡𝑝 ≤ 0   ∀p,1=1...p    (3) 

 

Where: 

i: Diameter,  

p: Orders of lumber products, 1…m   

o: Lumber, 1…n 

𝑈𝑖𝑗𝑘𝑝:Vol. of logs (m3) of diameter i, log grade j, sawn with sawing pattern k, to satisfy order 

p. 

Prod _ :isw  Sawmilling productivity (h/m3) when sawing log diameter i. 

1 :pA  Advanced time (h) of sawn lumber order p.  



 

 

1 :pB  Backlogged time (h) of sawn lumber order p. 

_ :pd at Due date (h) for order p. 

Therefore, two models were formulated to address the same OLPP problem from different 

perspectives (Figure 1). Initially, the PL model met lumber product demand per period, 

implicitly ensuring the due dates of the set of lumber orders constituting that demand. In each 

period, PL generated lumber to fulfill demand until reaching production capacity. 

Simultaneously, it determined the volume of raw materials and products for inventory. While 

this approach ensures timely deliveries to customers, it is costly due to its underutilization of 

mill capacity, disregarding setup costs and the number of production batches needed to 

satisfy orders (Wery et al. 2014). Conversely, the PS model was formulated, wherein lumber 

product demands are consolidated into orders with specified due dates processed in a 

sequence. Orders are applied in a sequence based on either processing times or due dates, as 

suggested by Yaghubian et al. 2001. The periods of the formulation were dropped off, then 

an “earliness” constraint was added that ensured that the processing time of order p, and 

processing times of preceding times orders must be less than or equal to the due date of order 

p (Equation 3). Accordingly, this constraint compelled orders to be processed without 

violating their due dates, however, due to model infeasibilities, the earliness constraint was 

relaxed, allowing overdue orders without penalties.  

The main difference between PS and PL lies in the fact that PS operates on a one-week 

equivalent period, whereas PL involves six periods, corresponding to days of the week. 

Additionally, lumber products demand by period in PL are associated with orders containing 

a set of lumber that must be satisfied by a specific due date. 

 



 

 

 

Figure 1: Description of solution approaches for the lumber production problem 

 

When testing the planning and scheduling approaches (i.e., PL and PS models) with 

conflicting objectives, not all the model runs were feasible for the lumber product demand 

and order size scenarios used. Consequently, both model formulations were adjusted to 

accommodate backlogs in the PL model and to accept delayed orders by relaxing the earliness 

constraint in the PS model. No economic penalties were imposed on either backlogs or 

delayed orders due to the subjective nature of these values and the absence of satisfactory 

criteria. However, these delays were factored into determining key model performance 

metrics (e.g., backlog ratios, earliness, or lateness ratios). In the PL model, the total backlogs 

divided by the lumber product demands determined a value known as the backlog ratio for 

sawn lumber and anti-stained lumber (i.e., A_BO1(%), and A_BO2(%) in the model). A 

lower ratio indicates a better solution, signifying lower backlog volumes relative to demand.  



 

 

In the PS model, metrics were derived from earliness and lateness of orders. Order earliness 

or lateness in hours was determined based on the time an order was produced in relation to 

its due date (i.e., A1p, A2p, B1p, and B2p in the model). The hours of earliness or lateness for 

each order relative to its due date were used to calculate the ratio of earliness or lateness (%) 

(i.e., Tfea1p, Tfea2p, Tfde1p, Tfde2p in the model). The ratio of earliness or lateness for each 

order, multiplied by the order’s volume, determined the early or late volume of the order (i.e., 

Ad_1_volp, Ad_2_volp, Ba_1_volp, and Ba_2_volp in the model). The summation of early 

and late volumes per order determined the total late or early volumes (i.e., AV1, AV2, BV1, 

and BV2 in the model). Finally, the summation of the earliness or lateness ratio of orders 

determined the overall earliness or lateness ratio, equivalent to the backlog ratio of the PL 

model (i.e., A_AO1, A_AO2, A_BO1, and A_BO2 in the model). 

The PL model allows for backlogs that need to be produced immediately in the subsequent 

planning period (refer to constraints 2 and 3 of model PL in Appendix A). In contrast, the PS 

model accommodates overdue orders, resulting in delays relative to the due dates (i.e., hours 

of delay). Technically, these delays were translated into volumes using sawing and anti-stain 

process productivity, representing equivalent backlogged volumes in the PL model 

(constraints 40, 41, 50, 51, 54, and 55 of model PS in Appendix B). In the case of PS model, 

overdue orders and the corresponding backlog volumes did not incur penalties (for detailed 

formulations of the models, refer to Appendix A and B).  

 

 

Results and discussion 

 



 

 

 

Analysis of the lumber manufacturing costs 

 

 

The results were evaluated with consideration of the modeling approach, the applied static 

heuristic, and the size of lumber orders. For large orders, the lumber manufacturing cost 

exhibit a change of no more than 0,1 %. In the case of small orders, the lumber cost did not 

vary beyond 1,7 %, and for mixed orders, the cost did not change by more than 0,5 %. Orders 

with high variation experienced a cost change of no more than 0,1 %, while orders with low 

variation saw a cost change of no more than 0,2 % (Table 3). 

 

Table 3: Lumber manufacturing costs for the planning and scheduling approaches. 



 

 

 

 

 

Analysis of due dates and backlog 

 

 

The impact of the relaxation on overdue volumes was more pronounced than on lumber 

manufacturing costs. Larger averages of delayed orders (in hours) and consequently, 

backlogged volumes, were observed with the PS-S and PS-L in comparison to PS-E. 

However, the average backlogged volumes for the PL approach were also noteworthy. For 

instance, the PS-E had an average of backlogged volumes equivalent to 0,5 % of the volumes 



 

 

of lumber demand ordered. In the case of PL, the average backlogged volumes represented 

17 % of the volumes of lumber demand ordered. For PS-L, the average backlogged volumes 

were 41 % of the volume of orders ordered, and for PS-S, the average backlogged volumes 

were 44 % of the volume of orders ordered, irrespective of the order size (Table 3). Figure 2 

shows the distribution of backlogged volumes across model scenarios. 

(a) 

 

(b) 

Figure 2: Lumber Manufacturing a) Costs Ratio and b) Backlog lateness ratio. 

 



 

 

The PL and PS-E models yielded cost results that were remarkably similar across various 

order sizes. The PS-E sequence closely resembled how the multi-period PL model handled 

lumber product demand during the period when the demand was initiated. Consequently, 

both the PL and PS-E models exhibited very similar costs. However, due to the heuristic 

nature of the E static heuristic, the PL model consistently generated lower costs. These 

findings align with the results reported by Maturana et al. 2010, where an LP multi-period 

model and a heuristic scheduling planning tool based on due dates were compared. However, 

they reported larger differences, such as 52 %, in costs determined by the LP model and the 

heuristic approach for lumber demand scenarios. This disparity may be attributed to the use 

of more extensive and specific data perturbations, like increasing the demand of a low-value 

product by 10 %. In contrast, this research employed random changes within certain rates 

applied to all lumber demand data. Therefore, the differences reported in this study were 

smaller; for instance, the PS-E cost was only 1,7 % higher than the PL cost when processing 

small orders.  

As highlighted by Gaudreault et al. 2011 for industrial settings, the inevitability of overdue 

orders is acknowledged. Consequently, the effectiveness of planning approaches can be 

evaluated through late deliveries. The results revealed that the average ratios of backlogged 

orders were 0,5% for the PS-E, 17 % for the PL, 41 % for the PS-L, and 44 % for PS-S 

approaches, irrespective of the order size. These values align with those reported by 

Gaudreault et al. 2011, who observed ratios of backlogged volume of orders ranging between 

26 % and 50 % when addressing a similar problem. However, their solution involved utilizing 

a planning-scheduling MIP and an LPT heuristic model with coordination protocols over an 

agent-based platform. 



 

 

The PS-E approach demonstrated intriguing capabilities of both models (i.e., PL model and 

PS model). It exhibited cost saving when planning orders with high variations in the volume 

of orders, achieving a 0,2 % lower cost than the PL for the same order sizes. However, the 

PS-E proved equally efficient as the PL when processing large and small variations orders as 

well (Table 4). Consequently, the PS-E displayed a greater ability to reduce due date delays 

and, therefore, overdue volumes compared to the PL. 

Furthermore, the PS-L approach could be employed when planning small orders resulting in 

a cost 0,24 % lower than the average of the PL for the same order size. This potential 

utilization of PS-L could be extended to these order sizes. 

The PL model demonstrated high efficiency in addressing the lumber manufacturing 

production planning problem as a general lot sizing and scheduling problem with cost 

minimization (Maness and Adams 1991, Maness and Norton 2002, Singer and Donoso 2007, 

Vergara et al. 2015, Broz et al. 2019). LP proved to be a highly effective solution method 

when adjusting order sizes and testing sequences for order processing. However, this research 

showed that this model formulation did not ensure the most cost-effective production plan or 

the lowest backlogged volumes under all circumstances. 

While the percentage differences in costs for the model scenarios were small, the economic 

impact of the PS-E approach could be significant, given the operational scale of this type of 

facility. Furthermore, the PS-E approach demonstrated the capability to reduce the backlog 

ratio close to zero, compared to the PL backlog ratio of 17 %. No penalties were imposed to 

backlogs due to their subjective nature; however, when shortages occur, the demand is either 

lost or backlogged with substantial costs. In manufacturing, shortage costs are estimated 

based on lost revenue. Gupta and Starr 2014 suggested a cost ratio of 1:4 between holding 

inventory cost and backlog cost, while West 1989 assumed that a reasonable value for a 



 

 

backlogged unit should be the delivery price. Therefore, considering the chosen criterion for 

penalizing backlogs and keeping in mind its limitations, the PS-E and PL approaches were 

benchmarked. As a result, if the developed planning method is adopted using a conservative 

backlog cost, a sawmill producing 300000 m3 per year would reduce backlogged orders by 

51 thousand m3 (equivalent to a 17 % backlog reduction). Assuming a holding lumber cost 

of 2 $/m3, the annual savings would amount to 

 $408000. 

The set-up cost was excluded from lumber processing costs to avoid the incorporation of 

binary variables for modeling the fixed cost associated with changing production plans, 

opting instead for an LP formulation. This decision was primarily made to facilitate problem-

solving within a reasonable timeframe. The application of this relaxation approach has been 

observed in previous studies, such as Maturana et al. 2010 and Yaghubian et al. 2001 in the 

context of lumber manufacturing production planning and dry kiln scheduling problems. 

Additionally, the negligible setup times attributed to high-production sawmills, which are 

now under CNC control for log processing and cant breakdown machines, set-up times are 

negligible. 

 

 

Conclusions 

 

 

The PL approach resulted in the lowest costs, albeit with only a slight advantage compared 

to the PS-E. However, the PS-E approach demonstrated comparable efficiency to PL but with 



 

 

lower backlogged volumes. Consequently, the PS-E model is recommended as the best 

approach for planning lumber production orders in sawmilling operations regardless of 

lumber order sizes. It is important to note that this conclusion is applicable under specific 

conditions, including a cut-to-order lumber production environment, a significant emphasis 

on backlogs valuation or penalization due to overseas lumber customers' focus or specialty 

lumber products focus, and short-term planning horizons (e.g., Chilean sawmilling industry).  

Integrated forest companies cater to customers with varying due date requirements, placing 

a significant emphasis on internal customer with high due date flexibility. Most of the lumber 

production planning research, however, has been conducted without accounting for any due 

date flexibility. Typically, only backlogs in terms of the volume of lumber products have 

been considered. The treatment of overdue orders may vary, contingent on the willingness of 

customers to accept delays. A promising avenue for new research would involve exploring 

approaches to model the problem with flexible due dates for customers, as opposed to 

excessively constraining the lumber manufacturing production planning problem. 

The limitations of this research should be acknowledged. Firstly, only 30 model runs were 

conducted by order size, and an increased number of data sets and model runs would enhance 

the reliability of the results. Secondly, the data sets were generated based on the ideal lumber 

demand for this specific sawmill case study, and rates of variation were randomly selected. 

Consequently, a more in-depth analysis of these rates of variation should be further studied. 

Lastly, decision-making models for sawmilling and anti-stain operations were formulated, 

excluding kiln drying operations. Incorporating such operations could prove challenging due 

to their utilization of parallel resources. 
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APPENDIX 

Appendix: Single nomenclature 

Sets 

i: Diameter, j: Log grade, k: Sawing pattern, o: Lumber product, from 1…n, n ∈   Z 

s: Planning periods p: Orders of lumber products, 1…m,  m ∈   Z  

Data declaration and Decision Variables:  

Logprice𝑖𝑗  : Log price in diameter i, and log grade j in $/m3. 

Cilog𝑠 : Cost to keep 1 m3 of log-in inventory in period s. 

Cisa𝑠 : Cost to keep 1 m3 of sawn lumber in inventory in period s. 

Ciat𝑠 : Cost to keep 1 m3 of anti-stain treated lumber in inventory in period s. 

Sawing_cost : Cost of sawing in $ per hour 

At_cost : Cost of anti-stain treatment in $ per hour. 

Yield_sw𝑖𝑗𝑘𝑜  : Sawmilling yield in [%] of product o, recovered from a log of diameter i, grade j with sawing pattern k. 

Yield_at𝑜 : Anti-stain treatment yield in [%] of lumber product o. 

Cap_sw𝑠 : Sawmilling capacity (h) in period s.  

Cap_at𝑠 : Anti-stain treatment capacity (h) in period s.  

Prod_sw𝑖 : Sawmilling productivity (h/m3) when sawing log diameter i. 

Prod_at𝑜 : Anti-stain treatment productivity (h/m3) when treating lumber product o. 

IOLuSA𝑜 : Initial inventory of sawn lumber product o (m3). 

IOLuAT𝑜 : Initial inventory of anti-stain treated lumber product o (m3). 

D_at𝑜𝑠 : Demand for anti-stain lumber (m3) product o, in period s 

Cilog : Cost in $ of keep 1 m3 of log in inventory.  

Cisa : Cost in $ of keep 1 m3  of sawn lumber in inventory. 

Ciat : Cost in $ of keep 1 m3 of anti-stain treated lumber in inventory. 

𝐶𝑎𝑝_𝑠𝑤  : Sawmilling capacity (h).    

𝐶𝑎𝑝_𝑎𝑡 : Anti-stain capacity (h). 

𝐷_𝑎𝑡𝑝𝑜 : Lumber demand (m3) for anti-stain lumber product o contained in order p. 

𝑑_𝑎𝑡𝑝 : Due date (h) for order p. 

𝑈𝑖𝑗𝑘𝑠 : Vol. of logs (m3) of diameter i, log grade j, sawn with sawing pattern k, in periods. 

𝐼𝑆𝐴𝑜𝑠 : Sawn lumber inventory (m3) of lumber product o, in period s. 

𝐼𝐴𝑇𝑜𝑠 : Anti-stained lumber inventory (m3) of product o, in period s. 

𝑉_𝑠𝑎𝑜𝑠  : Sawmill lumber production (m3) of product o, produced in period s. 

𝑊_𝑎𝑡𝑜𝑠 : Vol. (m3) of lumber product o, transferred to anti-strain treatment in period s. 



 

 

𝑉_𝑎𝑡𝑜𝑠 : Anti-stain treatment production (m3) of lumber product o, in period s. 

𝐵_𝑔𝑟𝑜𝑠  : Backlog volume of sawn lumber products o, in period s (m3). 

𝐵_𝑎𝑡𝑜𝑠 : Backlog volume of anti-stain treated lumber products o, in period s (m3). 

𝐴1𝑝 : Advanced time (h) of sawn lumber order p.  

𝐵1𝑝 : Backlogged time (h) of sawn lumber order p. 

𝐴2𝑝 : Advanced time (h) of anti-stain lumber order p.  

𝐵2𝑝 : Backlogged time (h) of anti-stain lumber order p. 

𝐵𝑎_1_𝑣𝑜𝑙𝑝 : Delayed volumes produced of the sawn lumber order p (m3). 

𝐵𝑎_2_𝑣𝑜𝑙𝑝 : Delayed volumes produced of the anti-stain lumber order p (m3).  

𝑇𝑓𝑑𝑒1𝑝 : Time fraction of delay of sawn lumber order p (%). 

𝑇𝑓𝑒𝑎1𝑝 : Time fraction of earliness of sawn lumber order p (%). 

𝑇𝑓𝑒𝑎2𝑝 : Time fraction of earliness of anti-stain lumber order p (%). 

𝑇𝑓𝑑𝑒2𝑝 : Time fraction of delay of anti-stain lumber order p (%).  

𝑈𝑖𝑗𝑘𝑝 : Vol. of logs (m3) of diameter i, log grade j, sawn with sawing pattern k, to satisfy order p. 

𝐿𝑜𝑔𝑉𝑝 : Vol. of logs consumed to satisfy order p (m3).  

𝑉_𝑠𝑎𝑝𝑜 : Sawmill lumber production (m3) of product o, produced for order p. 

𝐼𝑆𝐴𝑜𝑝 : Sawn lumber inventory (m3) of lumber product o, for order p. 

𝑊_𝑎𝑡𝑝𝑜 : Vol. of sawn lumber (m3) product o, transferred to anti-strain process for order p. 

𝑉_𝑎𝑡𝑝𝑜 : Anti-stain treatment production (m3) of lumber product o, for order p.  

𝑆𝑎𝑤𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑝 : Sawing time (h) expend to process order p. 

𝐴𝑑_1𝑝 : Ratio of earliness for sawn lumber order p about its due date (%). 

𝐴𝑑_2𝑝 : Ratio of earliness for anti-stain lumber order p about its due date (%). 

𝐵𝑎_1𝑝 : Ratio of delay for sawn lumber order p about its due date (%). 

𝐵𝑎_2𝑝 : Ratio of delay for anti-stain lumber order p about its due date (%). 

𝐴𝑑_1_𝑣𝑜𝑙𝑝 : Vol. produced in advance of the due date of the sawn lumber order p (m3).  

𝐴𝑑_2_𝑣𝑜𝑙𝑝 : Vol. produced in advance of the due date of the anti-stain lumber order p (m3).   

𝑂𝑉𝑝 : Vol. of anti-stain lumber containing order p. 

Where   

𝐴𝑡_𝑡𝑖𝑚𝑒𝑝 : Time expended to process order p on the anti-stain process (h). 

A_A01 : The summation of earliness ratios of sawn lumber orders (%) 

A_A02 : The summation of earliness ratios of anti-stain lumber orders (%) 

A_B01 : The summation of lateness ratios of sawn lumber orders (%) 

A_B02 : The summation of lateness ratios of anti-stain lumber orders (%) 

AV1/AV2 : The summation of early vol. of sawn lumber/ anti-stain lumber orders (m3). 

BV1/BV2 : The summation of late vol. of sawn lumber/ anti-stain lumber orders (m3). 

 

Appendix A: Plan (PL) model 

Objective function   

𝑀𝑖𝑛 : ∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠 × 𝐿𝑜𝑔𝑝𝑟𝑖𝑐𝑒𝑖𝑗+ ∑ 𝐼𝐴𝑇𝑜𝑠𝑜𝑠 × 𝐶𝑖𝑎𝑡𝑠 + ∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠 × 𝑃𝑟𝑜d_sw𝑖 × Sawing_cost  + 

∑ W_atos × Prod_at𝑜𝑠 × 𝐴𝑡_𝑐𝑜𝑠𝑡 

(1) 

 

Subject to: 

 

∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠 × 𝑌𝑖𝑒𝑙_𝑠𝑤𝑖𝑗𝑘𝑜𝑠 = 𝑉_𝑠𝑎𝑜𝑠     ∀𝑜, 𝑠 = 1 (2) 

∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠 × 𝑌𝑖𝑒𝑙_𝑠𝑤𝑖𝑗𝑘𝑜𝑠 = 𝑉_𝑠𝑎𝑜𝑠 + 𝐵_𝑔𝑟𝑜𝑠−1   ∀𝑜, 𝑠 > 1 (3) 

∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠 × 𝑃𝑟𝑜𝑑_𝑠𝑤𝑖 ≤ 𝐶𝑎𝑝_𝑠𝑎𝑤𝑠    ∀𝑠  (4) 

𝑉_𝑠𝑎𝑜𝑠 − 𝐼𝑆𝐴𝑜𝑗 − 𝑊_𝑎𝑡𝑜𝑠 =  0   ∀𝑜, 𝑠 = 1    (5) 

𝑉_𝑠𝑎𝑜𝑠 + 𝐼𝑆𝐴𝑜𝑠−1 − 𝐼𝑆𝐴𝑜𝑠 + 𝐵_𝑔𝑟𝑜𝑠−𝑊_𝑎𝑡𝑜𝑠 = 0    ∀𝑜, 𝑠 > 1 (6) 

𝑊_𝑎𝑡𝑜𝑠 × 𝑌𝑖𝑒𝑙𝑑_𝑎𝑡𝑜 = 𝑉_𝑎𝑡𝑜𝑠     ∀𝑜, 𝑠 = 1   (7) 



 

 

𝑊_𝑎𝑡𝑜𝑠 × 𝑌𝑖𝑒𝑙𝑑_𝑎𝑡𝑜 = 𝑉_𝑎𝑡𝑜𝑠 + 𝐵_𝑎𝑡𝑜𝑠−1   ∀𝑜, 𝑠 > 1   (8) 

𝑉_𝑎𝑡𝑜𝑠 + 𝐼𝐴𝑇𝑜𝑠−1 = 𝐷_𝑎𝑡𝑜𝑠   ∀𝑜, 𝑠 = 1   (9) 

𝑉_𝑎𝑡𝑜𝑠 + 𝐼𝐴𝑇𝑜𝑠−1 − 𝐼𝐴𝑇𝑜𝑠 + 𝐵_𝑎𝑡𝑜𝑠 = 𝐷_𝑎𝑡𝑜𝑠   ∀𝑜, 𝑠 > 1        (10) 

∑ 𝑊_𝑎𝑡𝑜𝑠𝑜𝑠 × 𝑃𝑟𝑜𝑑_𝑎𝑡𝑜 ≤ 𝐶𝑎𝑝_𝑎𝑡𝑠      ∀𝑠    (11) 

𝐵_𝑔𝑟𝑜𝑠 = 0     ∀𝑜, 𝑠 = 6     and     𝐵_𝑎𝑡𝑜𝑠 = 0     ∀𝑜, 𝑠 = 6       (12) 

𝐼𝑆𝐴𝑜𝑠 = 0     ∀𝑜, 𝑠 = 6   (13) 

𝐼𝑇𝐴𝑜𝑠 = 0     ∀𝑜, 𝑠 = 6   (14) 

Sawing_time𝑖 = ∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠 × Prod_sw𝑖    ∀𝑖 (15) 

At_time𝑜 = ∑ W_at𝑜𝑠𝑠 × Prod_at𝑜     ∀s   (16) 

𝐿𝑜𝑔 𝑐𝑜𝑠𝑡: 𝐿𝑜𝑔_𝑐𝑜𝑠𝑡=∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠 × 𝐿𝑜𝑔𝑝𝑟𝑖𝑐𝑒𝑖𝑗    (17) 

𝐿𝑜𝑔 𝑖𝑛𝑝𝑢𝑡: 𝐿𝑜𝑔_𝑖𝑛𝑝𝑢𝑡=∑ 𝑈𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑠     (18) 

𝑆𝑎𝑤𝑖𝑛𝑔 𝑐𝑜𝑠𝑡: 𝑆𝑎𝑤𝑖𝑛𝑔_𝑐𝑜𝑠𝑡=∑ 𝑆𝑎𝑤𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑖𝑖 × 𝑆𝑎𝑤𝑖𝑛𝑔_𝑐𝑜𝑠𝑡   (19) 

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡: 𝐴𝑡_𝑐𝑜𝑠𝑡=∑ 𝐴𝑡_𝑡𝑖𝑚𝑒𝑜𝑜 × 𝐴𝑡_𝑐𝑜𝑠𝑡 (20) 

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦: 𝐿𝑢_𝑔𝑟_𝑖𝑐𝑜𝑠𝑡=∑ 𝐼𝑆𝐴𝑜𝑠𝑜𝑠 × 𝐶𝑖𝑠𝑎𝑠 (21) 

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑛𝑡𝑖𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦: 𝐿𝑢_𝑎𝑡_𝑖𝑐𝑜𝑠𝑡=∑ 𝐼𝐴𝑇𝑜𝑠𝑜𝑠 × 𝐶𝑖𝑎𝑡𝑠    (22) 

𝐺𝑟𝑒𝑒𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐺𝑅𝑉𝐿𝑢𝑚𝑏𝑒𝑟=∑ 𝑉_𝑠𝑎𝑜𝑠𝑜𝑠    (23) 

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐴𝑇𝐿𝑢𝑚𝑏𝑒𝑟=∑ 𝑉_𝑎𝑡𝑜𝑠𝑜𝑠    (24) 

𝐺𝑟𝑒𝑒𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑: 𝐴𝑇_𝐷𝑒𝑚𝑎𝑛𝑑=∑ 𝐷_𝑎𝑡𝑜𝑠𝑜𝑠  (25) 

𝐵𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑔𝑟𝑒𝑒𝑛 𝑙𝑢𝑚𝑏𝑒𝑟∶ 𝐵𝑉1 = ∑ 𝐵_𝑔𝑟𝑜𝑠𝑜𝑠  (26) 

𝐵𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟∶ 𝐵𝑉2 = ∑ 𝐵_𝑎𝑡𝑜𝑠𝑜𝑠  (27) 

 

The objective function (1) minimizes the lumber manufacturing costs, which are: log costs, 

sawn and anti-stain treated lumber inventory costs, and sawing and anti-stain processing 

costs. Backlogs were allowed, consequently, several constraints, and metrics to account for 

backlog volumes. The model constraints are constraints (2) and (3), which ensure that the 

production of sawn lumber products for period 1, and for periods >1 includes backlogs from 

the previous period. The sawmilling capacity constraint (4), the summation of the time 

expended to saw logs, cannot exceed sawing capacity per period; the flow balance constraint 

(5) for period 1, the sawn lumber production less the period inventory is transferred to the 

anti-stain process. The flow balance constraint (6) for periods >1, ensures that the flow of 

sawn lumber products from the sawmill to the anti-stain treatment process includes the 

backlogs. The anti-stain treated production for period 1 (7), where sawn lumber products are 

processed with anti-stain yields to produce anti-stain lumber products; constraint (8) ensures 

that the production of anti-stain lumber for periods >1 includes backlogs from the previous 

period; constraint (9) is the market constraint for period 1; constraint (10) ensures that the 



 

 

demand of anti-stain lumber products for periods >1 includes inventory variation and 

backlogs; constraint (11) is anti-stain process capacity constraint; constraint (12), (13), and 

(14) ensures no backlogs, sawn lumber products inventory and anti-stain lumber products 

inventory for the final period; constraints (15) and (16) determine the sawing time, and anti-

stain process time; constraints (17) to (27) are model metrics, finally, all variables must be 

non-negative. 

 

Appendix B:  Plan-sched (PS) model 

The PS model does not work with lumber products demand by periods. Instead, it works with 

orders containing a set of lumber, which should be satisfied on certain due dates. However, 

as the objective of this research was to test S, E, and L static heuristic schedules, the model 

solves the problem with only these predetermined schedules. The PS model accepts overdue 

orders, which means delays in hours of a certain order relative to its due date. Accordingly, 

orders must be processed with a sequence, which was the E, L, and S static heuristic 

schedules. 

Variables, constraints, and metrics were added to account for backlogged volumes due to 

orders delays. Delays were transformed in volumes by using sawing and anti-stain process 

productivity, which enabled to compare backlogged volumes between the formulation of 

models PL and PS. In such a formulations overdue orders and their equivalent backlogs 

volumes were not penalized.  

For a better understanding, the production of sawn lumber did not have an explicit demand 

or due date but was driven by the demand and delivery date of the final product. 



 

 

Consequently, the metrics were always based on the production of stain lumber wood 

products. The PS formulation follows:  

Objective function  

𝑀𝑖𝑛:∑ 𝑈𝑖𝑗𝑘𝑝 × 𝐿𝑜𝑔𝑝𝑟𝑖𝑐𝑒𝑡𝑖𝑗𝑖𝑗𝑘𝑝 +∑ 𝐺𝑟𝑉𝑝𝑝 × 𝑇𝑓𝑒𝑎1𝑝 × 𝐶𝑖𝑠𝑎 +  ∑ 𝐺𝑟𝑉𝑝𝑝 × 𝑇𝑓𝑒𝑎2𝑝 × 𝐶𝑖𝑎𝑡+ 

∑ 𝑆𝑎𝑤𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑝 ×𝑝 𝑆𝑎𝑤𝑖𝑛𝑔_𝑐𝑜𝑠𝑡 + ∑ At_time𝑝𝑝 × 𝐴𝑡_𝑐𝑜𝑠𝑡   

(30) 

 

Subject to: 

 

∑ 𝑈𝑖,𝑗,𝑘,𝑝𝑖𝑗𝑘𝑝 × 𝑌𝑖𝑒𝑙𝑑_𝑠𝑤𝑖,𝑗,𝑘,𝑜 = 𝑉_𝑠𝑎𝑝,𝑜  ∀𝑝, 𝑜 (31) 

∑ 𝑈𝑖,𝑗,𝑘,𝑝𝑖𝑗𝑘𝑝 × 𝑃𝑟𝑜𝑑_𝑠𝑤𝑖 − 𝐶𝑎𝑝_𝑠𝑤 ≤ 0    ∀p (32) 

∑ 𝑈𝑖,𝑗,𝑘,𝑙𝑖𝑗𝑘𝑙 × Prod_sw𝑖 + A1𝑝 − B1𝑝 − d_at𝑝 ≤ 0    ∀p, l = 1 … p (33) 

V_sa𝑝,𝑜 − IOLuSA𝑝,𝑜 − W_at𝑝,𝑜 = 0    ∀p, o   (34) 

W_at𝑝,𝑜 × Yield_at𝑜 − V_at𝑝,𝑜 = 0      ∀ p, o  (35) 

∑ 𝑊_𝑎𝑡𝑙,𝑜𝑙𝑜 × Prod_at𝑜 + A2𝑝 − B2𝑝 − d_at𝑝 ≤ 0   ∀ l = 1 … p, o    (36) 

V_at𝑝𝑜 + IOLuAT𝑝,𝑜 − D_atp,o = 0     ∀ p, o   (37) 

Tfea1𝑝 = A1𝑝/d_at𝑝      ∀ p   (38) 

Tfea2𝑝 = A2𝑝/d_at𝑝    ∀ p    (39) 

Tfde1𝑝 = B1𝑝/d_at𝑝   ∀ p   (40) 

Tfde2𝑝 = B2𝑝/d_at𝑝    ∀ p    (41) 

𝑂𝑉𝑝 = ∑ 𝐷_𝑎𝑡𝑝,𝑜𝑜        ∀ p   (42) 

∑ 𝑊_𝑎𝑡𝑝,𝑜𝑝𝑜 × 𝑃𝑟𝑜𝑑_𝑎𝑡𝑜 = 𝐶𝑎𝑝_𝑎𝑡  ∀p   (43) 

𝐿𝑜𝑔𝑉𝑝 = ∑ 𝑈𝑖,𝑗,𝑘,𝑝𝑖𝑗𝑘𝑝      ∀p   (44) 

GrV𝑝 = ∑ D_atpo𝑝𝑜      ∀p   (45) 

Sawing_time𝑝 = ∑ 𝑈𝑖,𝑗,𝑘𝑖𝑗𝑘𝑝 × Prod_sw𝑖    ∀p    (46) 

At_time𝑝 = ∑ 𝑊_𝑎𝑡𝑝𝑜𝑜 × Prod_at𝑜     ∀p    (47) 

Ad_1𝑝 = A1𝑝/d_at𝑝 × 100%   ∀p     (48) 

Ad_2𝑝 = A2𝑝/d_at𝑝 × 100%   ∀p   (49) 

Ba_1𝑝 = B1𝑝/d_at𝑝 × 100%   ∀p    (50) 

Ba_2𝑝 = B2𝑝/d_at𝑝 × 100%   ∀p    (51) 

Ad_1_vol𝑝 = Ad_1𝑝 × GrV𝑝/100%   ∀p   (52) 

Ad_2_vol𝑝 = Ad_2𝑝 × GrV𝑝/100%   ∀p    (53) 

Ba_1_vol𝑝 = Ba_1p × GrV𝑝/100%    ∀p    (54) 

Ba_2_vol𝑝 = Ba_2𝑝 × GrV𝑝/100%  ∀p    (55) 

 

Where: 

 

𝐿𝑜𝑔 𝑐𝑜𝑠𝑡: Log_cost = ∑ 𝑈𝑖𝑗𝑘𝑝 × 𝐿𝑜𝑔𝑝𝑟𝑖𝑐𝑒𝑡𝑖𝑗𝑖𝑗𝑘𝑝    (56) 

𝐿𝑜𝑔 𝑖𝑛𝑝𝑢𝑡: 𝐿𝑜𝑔_𝑖𝑛𝑝𝑢𝑡 = ∑ 𝑈𝑖𝑗𝑘𝑝𝑖𝑗𝑘𝑝  (57) 

𝑆𝑎𝑤𝑖𝑛𝑔 𝑐𝑜𝑠𝑡: 𝑆𝑎_𝑐𝑜𝑠𝑡 = ∑ 𝑆𝑎𝑤𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑝 ×𝑝 𝑆𝑎𝑤𝑖𝑛𝑔_𝑐𝑜𝑠𝑡   (58) 

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡: 𝐴𝑡_𝑐𝑜𝑠𝑡 = ∑ 𝐴𝑡_𝑡𝑖𝑚𝑒𝑝𝑝 × 𝐴𝑡_𝑐𝑜𝑠𝑡   (59) 

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 

:𝐿𝑢_𝑠𝑎_𝑖𝑐𝑜𝑠𝑡 = ∑ 𝐺𝑟𝑉𝑝𝑝 × 𝑇𝑓𝑒𝑎1𝑝 × 𝐶𝑖𝑠𝑎   

(60) 

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑛𝑡𝑖𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡 

: 𝐿𝑢_𝑎𝑡_𝑖𝑐𝑜𝑠𝑡 = ∑ 𝐺𝑟𝑉𝑝𝑝 × 𝑇𝑓𝑒𝑎2𝑝 × 𝐶𝑖𝑎𝑡  

(61) 

𝑆𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐺𝑅𝐿𝑢𝑚𝑏𝑒𝑟 = ∑ 𝑉_𝑠𝑎𝑝𝑜𝑝𝑜     (62) 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑠: 𝐺𝑅𝐵𝑎𝑐𝑘𝑙𝑜𝑔 = ∑ 𝐵_𝑔𝑟𝑝𝑜𝑝𝑜  (63) 

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐴𝑇𝐿𝑢𝑚𝑏𝑒𝑟 = ∑ 𝑉_𝑎𝑡𝑝𝑜𝑝𝑜   (64) 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑎𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑠 

: 𝐴𝑇𝐵𝑎𝑐𝑘𝑙𝑜𝑔 = ∑ 𝐵_𝑎𝑡𝑝𝑜𝑝𝑜    

(65) 

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑: 𝐴𝑇_𝐷𝑒𝑚𝑎𝑛𝑑 = ∑ 𝐷_𝑎𝑡𝑝𝑜𝑝𝑜    (66) 



 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠s 𝑓𝑜𝑟 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: 𝐴_𝐴01 = ∑ 𝐴𝑑1𝑝𝑝 /6   (67) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠s 𝑓𝑜𝑟 𝑎𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: 𝐴_𝐴𝑂2 = ∑ 𝐴𝑑2𝑝𝑝 /6   (68) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦 𝑓𝑜𝑟 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: 𝐴_𝐵01 = ∑ 𝐵𝑎1𝑝𝑝 /6    (69) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦 𝑓𝑜𝑟 𝑎𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: 𝐴_𝐵𝑂2 = ∑ 𝐵𝑎2𝑝𝑝 /6 (70) 

𝑆𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑎𝑑𝑣𝑎𝑛𝑐𝑒: 𝐴𝑉1 = ∑ 𝐴𝑑_1_𝑣𝑜𝑙𝑝𝑝  (71) 

𝐴𝑛𝑡𝑖 𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑎𝑑𝑣𝑎𝑛𝑐𝑒: 𝐴𝑉2 = ∑ 𝐴𝑑_2_𝑣𝑜𝑙𝑝𝑝  (72) 

𝑆𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑑𝑒𝑙𝑎𝑦: 𝐵𝑉1 = ∑ 𝐵𝑎_1_𝑣𝑜𝑙𝑝𝑝    (73) 

𝐴𝑛𝑡𝑖 𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑑𝑒𝑙𝑎𝑦: 𝐵𝑉2 = ∑ 𝐵𝑎_2_𝑣𝑜𝑙𝑝𝑝  (74) 

𝐺𝑟𝑉𝑝: 𝑉𝑜𝑙𝑢𝑚𝑒 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑡𝑜 𝑜𝑟𝑑𝑒𝑟 𝑝   (75) 

  

 

The objective function (30) minimizes lumber manufacturing costs, which are log costs, sawn 

lumber, and anti-stain inventory costs, plus sawing and anti-stain treatment costs. 

Additionally, a set of constraints were applied which were the following: 

The sawn lumber production constraint (31), where logs of a certain diameter, and grade, are 

processed with a certain sawing pattern to produce certain lumber product o, to satisfy order 

p; the sawmilling capacity constraint (32), the summation of time to process logs of all orders 

cannot exceed sawing capacity in hours. Surplus and slack variables were added to the 

earliness constraint to make the solution feasible, the earliness constraint (33), ensures that 

the processing time of sawn lumber order p, and processing times of preceding orders can be 

lower or exceed the due date of order p. Thus, the surplus or slack variables capture the delay 

or earliness of each order. The flow balance equation (34), where the sawn wood production 

plus the sawn lumber inventory is transferred to the anti-stain process. The anti-stain treated 

production constraint (35), where sawn lumber is processed with certain anti-stain yields to 

produce certain anti-stain lumber products to satisfy order p. The earliness constraint (36) for 

anti-stain lumber orders, which ensures that the processing time of order p, and processing 

times of preceding orders must be ≤ to the due date of order p. Thus, the surplus or slack 



 

 

variables capture the delay or earliness of each order. The market constraint (37), which 

ensures that the anti-stain lumber production plus the anti-stain inventory must be equal to 

the anti-stain lumber demand for all orders of anti-stain products. 

Additionally, constraint (38) determines the time fraction of earliness of sawn order p (%) as 

the ratio between the earliness of order p (h), and its due date (h). Constraint (39) determines 

the time fraction of earliness of anti-stain lumber order p (%) as the ratio between the 

earliness of order p (h), and its due date (h). Constraint (40) determines the time fraction of 

delay of sawn lumber order p (h), and its due date (h). Constraint (41) determines the time 

fraction of delay of anti-stain lumber order p (h), and its due date (h). Constraint (42) 

determines the volume (in m3) of each anti-stain lumber product order. Constraint (43) 

ensures that the summation of the time expended to process sawn lumber orders does not 

exceed anti-stain process capacity. Constraint (44) determines the volume of logs consumed 

(m3) for order p. Constraint (45) determines the volume (m3) of order p of anti-stain lumber 

products. Constraint (46) determines the sawing processing time of order p (h). Constraint 

(47) determines the anti-stain processing time of order p (h). Constraint (48) determines the 

ratio of earliness of order p of sawn lumber (%) in relation to its due date. Constraint (49) 

determines the ratio of earliness of order p of anti-stain lumber (%) in relation to its due date. 

Constraint (50) determines the ratio of delay of order p of sawn lumber (%) in relation to its 

due date. Constraint (51) determines the ratio of delay of order p of anti-stain lumber (%) in 

relation to its due date. Constraint (52) determines the volume of sawn lumber (m3) produced 

in advance of order p. Constraint (53) determines the volume of anti-stain lumber (m3) 

produced in advance of order p. Constraint (54) determines the backlog volume of sawn 

lumber (m3) produced for order p. Constraint (55) determines the backlog volume of anti-



 

 

stain lumber (m3) produced for order p. Equations (56) to (75) are model metrics and 

manufacturing costs. Finally, all decision variables must be non-negative. 

 


