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ABSTRACT

Although optimization models can be used to plan the production process, in most cases static heuristics, 
such as earliest due date (E), longest processing time (L), and shortest processing time (S), are used because 
of their simplicity. This study aims to analyze the production cost of the static heuristics and to determine how 
this cost relates to the size of the production orders in the sawmilling industry. We set a planning problem with  
different orders and due dates and solved it using two cost-minimization models to compare their solutions. 
The first was a planning model (PL) where orders were split up into products demand by period, and the 
second, a planning scheduling (PS) where the sequence of processing orders based on static heuristics was 
assumed as known. In the latter, the minimum production cost for each static heuristic was found. In both 
models, the same resource constraints were assumed. The costs showed no significant changes based on order 
sizes. However, 0,5 % of orders were delayed using PS-E, and 17 % of orders were delayed using PL. PL was 
an efficient solution method when changing the orders´ size and when looking for the best static heuristic to 
process the orders. However, PS-E showed the ability to reduce the backlog close to zero while the PL backlog 
ratio was 17 %. No penalties were applied to backlogs due to their subjective nature; however, when shortages 
occurred, the demand was unmet or backlogged with substantial costs. Thus, in case the proposed method 
is adopted using a conservative backlog cost, a sawmill producing under the cut-to-order environment that 
produces 300000 m3 /year would reduce backlogged orders by 51000 m3. If the holding lumber cost is 2 $/m3, 
annual savings would be $408000.

Keywords: Lumber planning, lumber scheduling, backorders cost, static heuristics, minimum production 
costs, sawmills. 

INTRODUCTION

In the year 2020, the forest industry emerged as one of the key pillars of the Chilean economy,  
contributing 2,1% to the national GDP. Forty percent of all industrial roundwood was used in sawmills, with 
a similar percentage allocated to pulpwood and paper production. The remaining portion was used in the 
manufacturing of lumber, panels, and other products, many of which were exported. Chilean forest companies 
exhibit a high level of integration, encompassing operations in forestry, cellulose, paper, lumber, plywood, and 
energy production. Nevertheless, there has been a growing focus on lumber production, driven by the need to 
address significant efficiency gaps. 

1Universidad del Bio-Bio. Facultad de Ingeniería. Departamento de Ingeniería en Maderas. Concepción, Chile.
2Universidad del Desarrollo. Facultad de Ingeniería. Concepción, Chile. 
3The University of British Columbia. Faculty of Forestry. Forest Resources Management Department. Vancouver, Canada. 
♠Corresponding author: fvergara@ubiobio.cl 
Received: 11.08.2023 Accepted: 23.04.2024



                Maderas. Ciencia y tecnología 2024 (26): 39, 1-19

                                                                                                                

Universidad del Bío-Bío

2

In most large sawmills in Chile, the planner faces the task of balancing the utilization of logs. This involves 
assigning sawing patterns to logs to meet orders deadlines while ensuring a certain performance threshold 
regardless of its impact on production costs. Unfortunately, these performance thresholds often clash with the 
efficient utilization of capacity. For instance, this conflict arises when scheduling small batches for numerous 
orders without considering setup costs. Conversely, scheduling large batches for a few orders prioritizes maxi-
mum productivity. This paper seeks to quantify the impact of static heuristics for scheduling, widely employed 
by sawmill planners, and the influence of lumber batch size on production costs. The objective is to identify 
the production setting in which static heuristics outperform others. This section begins with a literature review, 
highlighting gaps in existing research, and establishes the research objectives.

Lumber planning is based on a balance between timber supply and lumber demand. Sawmills that process 
timber from natural forests typically employ the cut-to-stock approach, whereas those processing timber from 
plantations favor the cut-to-order approach (Vanzetti et al. 2018, Marier et al. 2014). The Operational Lumber 
Planning Problem (OLPP) can be categorized as both a lot sizing and scheduling problem, determining when 
orders should be fulfilled while taking capacity into account to minimize backlog and inventory costs. 

The OLPP has been approached through Mixed Integer Programming (MIP) formulations, heuristics 
methods, and hybrid approaches that combine the strengths of both. MIP models play a crucial role in mini-
mizing the costs associated with raw materials, inventory, and backlog while adhering to available capacity 
constraints (Clark 2003). However, scheduling presents challenges due to sequence-dependent setups, where 
each machine’s setup time for a task is influenced by both the current job and the previous job for which the 
machine is setup. Additionally, multiple setups occur within a planning period. As a result, the MIP model for 
lot sizing and scheduling involves numerous binary variables, leading to computational intractability. While 
exact formulations produce high-quality solutions, they often come with impractical solution times. To over-
come this complexity, a strategy involves relaxing the binary variables and constraints, breaking down the 
problem into smaller components to determine lot size, and establishing a sequence of lot setups (de Araujo et 
al. 2007 and Clark 2003). 

Maness and Adams 1991, followed by Maness and Norton 2002, conducted early research on lum-
ber planning and scheduling. The MIP model they developed aimed to maximize revenues by generating a  
bucking-sawing pattern and selecting the mix of logs to meet sales demand. This approach is suitable when 
backorders and inventories are allowed.

Sawmills commonly use MIP models with a focus on either volume or value. However, if dynamic prices 
can be applied and updated during sawing operations, optimized plans can yield more accurate plans resulting 
in using fewer logs (Todoroki and Ronnqvist 2010). 

Adopting a cut-to-order environment, where logs are sorted by diameter and processed in batches, has 
improved the results of the OLPP through timber transfer decisions among plants within a supply chain con-
text (Singer and Donoso 2007). A heuristic approach mimicking planner schedulers and a MIP model were 
developed and benchmarked by Huka and Gronalt 2017. The MIP model outperforms the heuristics, however, 
when applying the MIP model in a rolling planning horizon, the best heuristic outperforms it owing to the end 
effects included in the model.

An alternative approach was undertaken by Dumetz et al. 2019. A simulation planning method simu-
lated the arrival of new orders, demand, capacity, inventories, rolling planning horizon, and coordination  
mechanisms, resulting in an increased service level compared to centralized planning methods.

Furthermore, Vergara et al. 2015 pointed out that the lumber planning problem has been tackled with 
conflicting objectives, where a solution optimized for one objective adversely affects another. To address this 
conflict, Broz et al. 2019 applied a Goal Programming formulation, balancing problem metrics to showcase 
the importance of reconciling decision-makers’ local objectives. Additionally, a model feature facilitating 
the planning of log transportation to the sawmill was introduced by Vanzetti et al. 2018. However, realistic  
modeling formulation in the cut-to-order environment discussed would have required the inclusion of slack 
variables and penalties.  

In a cut-to-stock environment, Wery et al. 2014 emphasized the challenges that arise when dealing with 
customized orders. They proposed a simulation-optimization sequential framework to evaluate how mill  
settings and the introduction of new log classes impact the sawmill products mix when customized products 
are added to the plan during the planning horizon. Furthermore, Ben Ali et al. 2019 outlined the advantages of 
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integrating sales and operations planning and order promising based on revenue management concepts. Their 
MIP model determines sales decisions that maximizes profit while enhancing service levels for high-priority 
customer orders. 

In a cut-to-order environment, incorporating remanufacturing operations, Vanzetti et al. 2019 developed 
a MIP model for day-ahead scheduling optimization. This model utilizes both self-generated and data-based 
cutting patterns, emphasizing the advantage of generating all possible cutting patterns, which surpasses  
previous research efforts.

To address the OLPP in a more general context, Kaltenbrunner et al. 2020 integrated existing approaches 
and evolving scenarios. They developed a modular, flexible, and generic planning method, with MIP model 
cases differing in demand fulfillment constraints, optimal use of raw material constraints, and the division of 
the planning horizon. 

While previous reviews have focused on MIP and heuristic methods, this research aims to quantify the im-
pact of static scheduling heuristics on production costs. Therefore, a subsequent review of scheduling methods 
applicable to this initiative follows. 

Scheduling is typically conducted by shift leaders without considering cost consequences. A schedule 
arranges jobs in a specific order and determines their start and completion times (Maccarthy and Liu 1993). 
Operations Research (OR) methods can be employed to address scheduling problems, aligning with the pro-
duction flow and production system. Different objective functions, indirect objectives, and metrics can be pro-
duced based on the problem scale, allowing for the determination of solution technique performance gaps (for 
further details, refer to Maccarthy and Liu 1993). While the optimal schedule serves as a performance measure, 
it is important to note that costs and profits cannot be directly linked to schedules. Indirect objectives, such as 
completion time, flow time, lateness, and tardiness are used instead (Sipper and Bulfin 1997). 

OR methods employed to tackle scheduling problems encompass optimal methods, enumerative optimal 
MIP methods, and heuristic methods, the latter involving a certain degree of closeness to polynomial time 
(Maccarthy and Liu 1993). Additionally, static heuristics offers optimal solutions for certain problems, and 
they are a function of the order data (Possani 2001). In fact, static heuristics prioritize jobs and schedules them 
based on a rule that recognizes the priorities of all the orders that are waiting to be processed on a machine. 
The Shortest Processing Time (SPT) static heuristic prioritizes jobs based on their processing times, while 
Earliest Due Dates (EDD) static heuristic prioritizes jobs based on their due dates. The Longest Processing 
Times (LPT) static heuristic organizes jobs in a sequence with non-increasing processing times. Unfortunately, 
neither SPT nor LPT considers due dates, as these static heuristics primarily focus on minimizing flow time 
(i.e., cost minimization). If customer satisfaction is a crucial factor, EDD is the preferred choice because it 
minimizes tardiness (Sipper and Bulfin 1997).

Yaghubian et al. 2001 developed a model to address a dry kiln scheduling problem, a version of  
scheduling “n” jobs on “m” parallel machines. Jobs were assigned to kilns in accordance with their due dates, 
and the optimization problem revolved around allocating jobs to kilns. Each job was associated with demands 
(e.g., orders), and the due date was ensured by imposing a constraint that guaranteed the fulfillment of the last 
job on demand by the due date.

Furthermore, Maturana et al. 2010 tackled the OLPP using a Linear Programming (LP) model and a heu-
ristic approach that emulated planner decisions. They introduced log supply and demand perturbations. While 
the LP model proved to be faster than the heuristic approach for most scenario perturbations, it lacked explicit 
scheduling rules present in the heuristic method, such as LPT. In a similar vein, Pradenas et al. 2004 used a 
MIP model, benchmarking results with an artificial intelligence heuristic procedure based on a Tabu search 
algorithm, demonstrating promising performance when compared with an exact problem solution.

Meanwhile, Marier et al. 2014 formulated MIP models to address the OLPP. The MIP model for  
scheduling batches of lumber was simplified by imposing the LPT sequence to process orders on machines 
rather than generating and testing many combinations of order schedules. This simplification aimed to reduce 
complexity and make the problem more tractable (Vanzetti et al. 2019). 

Although efforts have been made to address the OLPP, much of the research has prioritized the due date 
of orders over production cost. Limited attention has been given to understanding how static heuristics for  
scheduling can impact costs. This research quantifies the effect on cost when using static heuristics for  
scheduling lumber orders on sawmills.
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The following sections provide a methodology outlining the approach, model formulations, data utilized, 
and the comparison strategy. Subsequently, the results are presented and benchmarked against previous re-
search, followed by a detailed discussion of findings and research limitations. We conclude with summaries of 
conclusions, implications, and study limitations.

MATERIALS AND METHODS

The methodology was designed to examine the impact of incorporating static heuristics, such as EDD, 
SPT, or LPT, in processing lumber production orders on cost, backlog, and overdue orders while solving the 
OLPP. The formulated models designed to address this problem are described, along with an explanation of 
how the demand for lumber products was utilized to generate various lumber demand scenarios. The subse-
quent section details the procedure for executing the models and elucidates how the problem data were input 
to explore variations in the problem. 

Problem setting

The OLPP was configured with 10 log diameters, a library of 100 sawing patterns, sawmilling and an-
ti-stain treatment processes, and 10 anti-stain lumber. The OLPP was approached using a lumber planning 
methodology, which is comparable to a lumber scheduling approach. For lumber planning, a timeframe of six 
periods, corresponding to weekdays, was employed. In contrast, the lumber scheduling approach utilized a 
period of 138 hours, equivalent to 6 days of 23 hours each. Each order consisted of a set of 10 lumber products, 
and the volume of every order matched the demand for the lumber products that needed to be fulfilled within 
a specific period for the lumber planning problem. This volume equivalency was translated into an order with 
a due date specified in hours to be satisfied within the scheduling problem.

Lumber manufacturing data

The data set utilized in this study was sourced from a lumber manufacturing company in southern Chile. 
To uphold company confidentiality, certain aspects such as logs, labor, and inventory costs were adjusted, 
although they closely approximate actual figures. Log supply was assumed to be unlimited to prevent infeasi-
bilities in the model due to log availability, and to maintain a focus on the impact of static heuristics rather than 
other factors (Singer and Donoso 2007, Maturana et al. 2010). 

An anti-stain process is incorporated into the lumber production of Radiata pine due to high proportion 
of sapwood, aiming to prevent fungal activity. Hence, sawing and anti-stain processes were considered as  
operations in this research.

The initial demand for lumber products was defined as the average production that the library of sawing 
patterns could produce when utilizing the entire sawmill capacity. The demand was based on a sawmill with 
a capacity of consuming up to 111 m3 of logs per hour and producing up to 62 m3 per hour of lumber. These 
figures varied based on log distributions and the sawing pattern library. This assumption aligns with the current 
working conditions of the company and is consistent with the case study by Maturana et al. 2010. To assess 
the impact of static heuristic (sequences) on the OLPP, five lumber product demand scenarios were generated 
based on the initial lumber product demand. These scenarios focused on varying rates applied to the initial 
demand between periods and among lumber products, with thirty values generated for each scenario (Table 1).
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Table 1: Scenarios of lumber products demand.

These five scenarios, each comprising 30 sets of lumber product demands organized by period or order, were 
fed into the models described in the next section, leading to a total of 600 model runs.

Decision-making model formulations

Two planning and scheduling models, namely a multi-period planning model (PL) and a planning- 
scheduler model (PS) with 3 versions, were developed and performances were compared. The initial optimi-
zation model (PL) is a MIP model (PL) that was transformed into a single-period allocation of orders problem, 
referred to as planning-scheduler (PS). The PS includes three versions: a scheduling model with Earliest Due 
Date static heuristic (PS-E), a scheduling model with Longest Processing Time static heuristic (PS-L), and 
a scheduling model with Shortest Processing Time static heuristic (PS-S). In the E static heuristic, orders 
are scheduled in ascending order of due dates. The S static heuristic involves sorting orders by increasing  
processing times. The L static heuristic schedules orders by decreasing processing times (Table 2).

Table 2: Models’ description.
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In the PL model, the demand for lumber product must be fulfilled within a specific period of the planning 
horizon (i.e., days of the week). Although the formulation did not explicitly include due dates, demand was 
allocated to certain periods. Thus, the model implicitly ensured demand satisfaction within a period, equiva-
lent to fulfilling an order containing a set of lumber product demands for a specific a due date (Equation 1 and 
Equation 2).

1 _  _    , 1os os osV at IAT D at o s−+ = ∀ =     (1)

1 _ _  _    , 1os os os os osV at IAT IAT B at D at o s−+ − + = ∀ >     (2)

Where:

o: Lumber product

s: Planning periods

_ :osV at Anti-stain treatment production (m3) of lumber product o in period s.

_ :osB at Backlog volume (m3) of anti-stain treated lumber products o in period s.

_ :osD at Demand for anti-stain lumber (m3) product o in period s.

:osIAT  Anti-stained lumber inventory (m3) of product o in period s.

  Prod _ 1 1 _ 0   p,1=1...pi j ijkp i p p pkp
U x sw A B d at+ − − ≤ ∀∑     (3)

Where

i: Diameter, 

p: Orders of lumber products, 1…m  

o: Lumber, 1…n

:ijkpU  Vol. of logs (m3) of diameter i, log grade j, sawn with sawing pattern k, to satisfy order p.

Prod _ :isw  Sawmilling productivity (h/m3) when sawing log diameter i.

1 :pA  Advanced time (h) of sawn lumber order p. 

1 :pB  Backlogged time (h) of sawn lumber order p.

_ :pd at Due date (h) for order p.

Therefore, two models were formulated to address the same OLPP problem from different perspectives 
(Figure 1). Initially, the PL model met lumber product demand per period, implicitly ensuring the due dates 
of the set of lumber orders constituting that demand. In each period, PL generated lumber to fulfill demand 
until reaching production capacity. Simultaneously, it determined the volume of raw materials and products for 
inventory. While this approach ensures timely deliveries to customers, it is costly due to its underutilization of 
mill capacity, disregarding setup costs and the number of production batches needed to satisfy orders (Wery 
et al. 2014). Conversely, the PS model was formulated, wherein lumber product demands are consolidated 
into orders with specified due dates processed in a sequence. Orders are applied in a sequence based on either 
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processing times or due dates, as suggested by Yaghubian et al. 2001. The periods of the formulation were 
dropped off, then an “earliness” constraint was added that ensured that the processing time of order p, and 
processing times of preceding times orders must be less than or equal to the due date of order p (Equation 3).  
Accordingly, this constraint compelled orders to be processed without violating their due dates, however, due 
to model infeasibilities, the earliness constraint was relaxed, allowing overdue orders without penalties. 

The main difference between PS and PL lies in the fact that PS operates on a one-week equivalent period, 
whereas PL involves six periods, corresponding to days of the week. Additionally, lumber products demand by 
period in PL are associated with orders containing a set of lumber that must be satisfied by a specific due date.

 
 

Figure 1: Description of solution approaches for the lumber production problem

When testing the planning and scheduling approaches (i.e., PL and PS models) with conflicting objec-
tives, not all the model runs were feasible for the lumber product demand and order size scenarios used.  
Consequently, both model formulations were adjusted to accommodate backlogs in the PL model and to accept 
delayed orders by relaxing the earliness constraint in the PS model. No economic penalties were imposed on 
either backlogs or delayed orders due to the subjective nature of these values and the absence of satisfactory 
criteria. However, these delays were factored into determining key model performance metrics (e.g., backlog 
ratios, earliness, or lateness ratios). In the PL model, the total backlogs divided by the lumber product demands 
determined a value known as the backlog ratio for sawn lumber and anti-stained lumber (i.e., A_BO1(%), and 
A_BO2(%) in the model). A lower ratio indicates a better solution, signifying lower backlog volumes relative 
to demand. 

In the PS model, metrics were derived from earliness and lateness of orders. Order earliness or lateness 
in hours was determined based on the time an order was produced in relation to its due date (i.e., A1p, A2p, 
B1p, and B2p in the model). The hours of earliness or lateness for each order relative to its due date were used 
to calculate the ratio of earliness or lateness (%) (i.e., Tfea1p, Tfea2p, Tfde1p, Tfde2p in the model). The ratio 
of earliness or lateness for each order, multiplied by the order’s volume, determined the early or late volume 
of the order (i.e., Ad_1_volp, Ad_2_volp, Ba_1_volp, and Ba_2_volp in the model). The summation of early 
and late volumes per order determined the total late or early volumes (i.e., AV1, AV2, BV1, and BV2 in the 
model). Finally, the summation of the earliness or lateness ratio of orders determined the overall earliness or 
lateness ratio, equivalent to the backlog ratio of the PL model (i.e., A_AO1, A_AO2, A_BO1, and A_BO2 in 
the model).

The PL model allows for backlogs that need to be produced immediately in the subsequent planning period 
(refer to constraints 2 and 3 of model PL in Appendix A). In contrast, the PS model accommodates overdue or-
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ders, resulting in delays relative to the due dates (i.e., hours of delay). Technically, these delays were translated 
into volumes using sawing and anti-stain process productivity, representing equivalent backlogged volumes 
in the PL model (constraints 40, 41, 50, 51, 54, and 55 of model PS in Appendix B). In the case of PS model, 
overdue orders and the corresponding backlog volumes did not incur penalties (for detailed formulations of the 
models, refer to Appendix A and B). 

RESULTS AND DISCUSSION

Analysis of the lumber manufacturing costs

The results were evaluated with consideration of the modeling approach, the applied static heuristic, and 
the size of lumber orders. For large orders, the lumber manufacturing cost exhibit a change of no more than 0,1 
%. In the case of small orders, the lumber cost did not vary beyond 1,7 %, and for mixed orders, the cost did 
not change by more than 0,5 %. Orders with high variation experienced a cost change of no more than 0,1 %, 
while orders with low variation saw a cost change of no more than 0,2 % (Table 3).

Table 3: Lumber manufacturing costs for the planning and scheduling approaches.

Analysis of due dates and backlog

The impact of the relaxation on overdue volumes was more pronounced than on lumber manufacturing 
costs. Larger averages of delayed orders (in hours) and consequently, backlogged volumes, were observed with 
the PS-S and PS-L in comparison to PS-E. However, the average backlogged volumes for the PL approach 
were also noteworthy. For instance, the PS-E had an average of backlogged volumes equivalent to 0,5 % of the 
volumes of lumber demand ordered. In the case of PL, the average backlogged volumes represented 17 % of 
the volumes of lumber demand ordered. For PS-L, the average backlogged volumes were 41 % of the volume 
of orders ordered, and for PS-S, the average backlogged volumes were 44 % of the volume of orders ordered, 
irrespective of the order size (Table 3). Figure 2 shows the distribution of backlogged volumes across model 
scenarios.
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Figure 2: Lumber Manufacturing a) Costs Ratio and b) Backlog lateness ratio.

The PL and PS-E models yielded cost results that were remarkably similar across various order sizes. The 
PS-E sequence closely resembled how the multi-period PL model handled lumber product demand during the 
period when the demand was initiated. Consequently, both the PL and PS-E models exhibited very similar 
costs. However, due to the heuristic nature of the E static heuristic, the PL model consistently generated lower 
costs. These findings align with the results reported by Maturana et al. 2010, where an LP multi-period model 
and a heuristic scheduling planning tool based on due dates were compared. However, they reported larger 
differences, such as 52 %, in costs determined by the LP model and the heuristic approach for lumber demand 
scenarios. This disparity may be attributed to the use of more extensive and specific data perturbations, like 
increasing the demand of a low-value product by 10 %. In contrast, this research employed random changes 
within certain rates applied to all lumber demand data. Therefore, the differences reported in this study were 
smaller; for instance, the PS-E cost was only 1,7 % higher than the PL cost when processing small orders. 

As highlighted by Gaudreault et al. 2011 for industrial settings, the inevitability of overdue orders is ac-
knowledged. Consequently, the effectiveness of planning approaches can be evaluated through late deliveries. 
The results revealed that the average ratios of backlogged orders were 0,5% for the PS-E, 17 % for the PL, 41 
% for the PS-L, and 44 % for PS-S approaches, irrespective of the order size. These values align with those 
reported by Gaudreault et al. 2011, who observed ratios of backlogged volume of orders ranging between 26 % 
and 50 % when addressing a similar problem. However, their solution involved utilizing a planning-scheduling 
MIP and an LPT heuristic model with coordination protocols over an agent-based platform.

The PS-E approach demonstrated intriguing capabilities of both models (i.e., PL model and PS model). 
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It exhibited cost saving when planning orders with high variations in the volume of orders, achieving a 0,2 % 
lower cost than the PL for the same order sizes. However, the PS-E proved equally efficient as the PL when 
processing large and small variations orders as well (Table 2). Consequently, the PS-E displayed a greater 
ability to reduce due date delays and, therefore, overdue volumes compared to the PL.

Furthermore, the PS-L approach could be employed when planning small orders resulting in a cost 0,24 % 
lower than the average of the PL for the same order size. This potential utilization of PS-L could be extended 
to these order sizes.

The PL model demonstrated high efficiency in addressing the lumber manufacturing production planning 
problem as a general lot sizing and scheduling problem with cost minimization (Maness and Adams 1991, 
Maness and Norton 2002, Singer and Donoso 2007, Vergara et al. 2015, Broz et al. 2019). LP proved to be 
a highly effective solution method when adjusting order sizes and testing sequences for order processing.  
However, this research showed that this model formulation did not ensure the most cost-effective production 
plan or the lowest backlogged volumes under all circumstances.

While the percentage differences in costs for the model scenarios were small, the economic impact of the 
PS-E approach could be significant, given the operational scale of this type of facility. Furthermore, the PS-E 
approach demonstrated the capability to reduce the backlog ratio close to zero, compared to the PL backlog 
ratio of 17 %. No penalties were imposed to backlogs due to their subjective nature; however, when shortages 
occur, the demand is either lost or backlogged with substantial costs. In manufacturing, shortage costs are es-
timated based on lost revenue. Gupta and Starr 2014 suggested a cost ratio of 1:4 between holding inventory 
cost and backlog cost, while West 1989 assumed that a reasonable value for a backlogged unit should be the 
delivery price. Therefore, considering the chosen criterion for penalizing backlogs and keeping in mind its 
limitations, the PS-E and PL approaches were benchmarked. As a result, if the developed planning method is 
adopted using a conservative backlog cost, a sawmill producing 300000 m3 per year would reduce backlogged 
orders by 51 thousand m3 (equivalent to a 17 % backlog reduction). Assuming a holding lumber cost of 2 $/m3, 
the annual savings would amount to $408000.

The set-up cost was excluded from lumber processing costs to avoid the incorporation of binary variables 
for modeling the fixed cost associated with changing production plans, opting instead for an LP formulation. 
This decision was primarily made to facilitate problem-solving within a reasonable timeframe. The application 
of this relaxation approach has been observed in previous studies, such as Maturana et al. 2010 and Yaghubian 
et al. 2001 in the context of lumber manufacturing production planning and dry kiln scheduling problems.  
Additionally, the negligible setup times attributed to high-production sawmills, which are now under CNC 
control for log processing and cant breakdown machines, set-up times are negligible.

CONCLUSIONS

The PL approach resulted in the lowest costs, albeit with only a slight advantage compared to the PS-E. 
However, the PS-E approach demonstrated comparable efficiency to PL but with lower backlogged volumes. 
Consequently, the PS-E model is recommended as the best approach for planning lumber production orders in 
sawmilling operations regardless of lumber order sizes. It is important to note that this conclusion is applicable 
under specific conditions, including a cut-to-order lumber production environment, a significant emphasis on 
backlogs valuation or penalization due to overseas lumber customers’ focus or specialty lumber products fo-
cus, and short-term planning horizons (e.g., Chilean sawmilling industry). 

Integrated forest companies cater to customers with varying due date requirements, placing a significant 
emphasis on internal customer with high due date flexibility. Most of the lumber production planning research, 
however, has been conducted without accounting for any due date flexibility. Typically, only backlogs in terms 
of the volume of lumber products have been considered. The treatment of overdue orders may vary, contin-
gent on the willingness of customers to accept delays. A promising avenue for new research would involve 
exploring approaches to model the problem with flexible due dates for customers, as opposed to excessively 
constraining the lumber manufacturing production planning problem.
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The limitations of this research should be acknowledged. Firstly, only 30 model runs were conducted by 
order size, and an increased number of data sets and model runs would enhance the reliability of the results. 
Secondly, the data sets were generated based on the ideal lumber demand for this specific sawmill case study, 
and rates of variation were randomly selected. Consequently, a more in-depth analysis of these rates of varia-
tion should be further studied. Lastly, decision-making models for sawmilling and anti-stain operations were 
formulated, excluding kiln drying operations. Incorporating such operations could prove challenging due to 
their utilization of parallel resources.
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APPENDIX

Appendix: Single nomenclature

Sets

i: Diameter, j: Log grade, k: Sawing pattern, o: Lumber product, from 1…n, n   Z∈  s: 
Planning periods p: Orders of lumber products, 1…m,  m   Z∈  

Data declaration and Decision Variables: 

 Logpriceij
: Log price in diameter i, and log grade j in $/m3.

 Cilogs
: Cost to keep 1 m3 of log-in inventory in period s.

 Cisa s
: Cost to keep 1 m3 of sawn lumber in inventory in period s.

 Ciat s
: Cost to keep 1 m3 of anti-stain treated lumber in inventory in period s.

Sawing_cost : Cost of sawing in $ per hour
At_cost : Cost of anti-stain treatment in $ per hour.

 Yield _ sw ijko
: Sawmilling yield in [%] of product o, recovered from a log of diameter i, grade 

j with sawing pattern k.

 Yield _ ato
: Anti-stain treatment yield in [%] of lumber product o.

 Cap _ sw s
: Sawmilling capacity (h) in period s. 

 Cap _ at s
: Anti-stain treatment capacity (h) in period s. 

 Prod _ sw i
: Sawmilling productivity (h/m3) when sawing log diameter i.

 Prod _ ato
: Anti-stain treatment productivity (h/m3) when treating lumber product o.

 IOLuSAo
: Initial inventory of sawn lumber product o (m3).

 IOLuATo
: Initial inventory of anti-stain treated lumber product o (m3).

 D _ atos
: Demand for anti-stain lumber (m3) product o, in period s

 Cilog : Cost in $ of keep 1 m3 of log in inventory. 

 Cisa : Cost in $ of keep 1 3m   of sawn lumber in inventory.
 Ciat : Cost in $ of keep 1 m3 of anti-stain treated lumber in inventory.

 _  Cap sw : Sawmilling capacity (h).  
 

 _Cap at : Anti-stain capacity (h).

 _ poD at : Lumber demand (m3) for anti-stain lumber product o contained in order p.

 _ pd at : Due date (h) for order p.

 ijksU : Vol. of logs (m3) of diameter i, log grade j, sawn with sawing pattern k, in periods.

 osISA : Sawn lumber inventory (m3) of lumber product o, in period s.

 osIAT : Anti-stained lumber inventory (m3) of product o, in period s.

 _ osV sa : Sawmill lumber production (m3) of product o, produced in period s.

 _ osW at : Vol. (m3) of lumber product o, transferred to anti-strain treatment in period s.

 _ osV at : Anti-stain treatment production (m3) of lumber product o, in period s.
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 _ osB gr : Backlog volume of sawn lumber products o, in period s (m3).

 _ osB at : Backlog volume of anti-stain treated lumber products o, in period s (m3).

 1pA : Advanced time (h) of sawn lumber order p. 

 1pB : Backlogged time (h) of sawn lumber order p.

 2 pA : Advanced time (h) of anti-stain lumber order p. 

 2 pB : Backlogged time (h) of anti-stain lumber order p.

 _1_ pBa vol : Delayed volumes produced of the sawn lumber order p (m3).

 _ 2 _ pBa vol : Delayed volumes produced of the anti-stain lumber order p (m3). 

 1pTfde : Time fraction of delay of sawn lumber order p (%).

 1pTfea : Time fraction of earliness of sawn lumber order p (%).

 2 pTfea : Time fraction of earliness of anti-stain lumber order p (%).

 2 pTfde : Time fraction of delay of anti-stain lumber order p (%). 

 ijkpU : Vol. of logs (m3) of diameter i, log grade j, sawn with sawing pattern k, to satisfy 
order p.

 pLogV : Vol. of logs consumed to satisfy order p (m3). 

 _ poV sa : Sawmill lumber production (m3) of product o, produced for order p.

 opISA : Sawn lumber inventory (m3) of lumber product o, for order p.

 _ poW at : Vol. of sawn lumber (m3) product o, transferred to anti-strain process for order p.

 _ poV at : Anti-stain treatment production (m3) of lumber product o, for order p. 
 

_ pSawing time : Sawing time (h) expend to process order p.

 _1pAd : Ratio of earliness for sawn lumber order p about its due date (%).

 _ 2 pAd : Ratio of earliness for anti-stain lumber order p about its due date (%).

 _1pBa : Ratio of delay for sawn lumber order p about its due date (%).

 _ 2 pBa : Ratio of delay for anti-stain lumber order p about its due date (%).

 _1_ pAd vol : Vol. produced in advance of the due date of the sawn lumber order p (m3). 

 _ 2 _ pAd vol : Vol. produced in advance of the due date of the anti-stain lumber order p (m3).  

 pOV : Vol. of anti-stain lumber containing order p.

Where

 _ pAt time : Time expended to process order p on the anti-stain process (h).
A_A01 : The summation of earliness ratios of sawn lumber orders (%)
A_A02 : The summation of earliness ratios of anti-stain lumber orders (%)
A_B01 : The summation of lateness ratios of sawn lumber orders (%)
A_B02 : The summation of lateness ratios of anti-stain lumber orders (%)

AV1/AV2 : The summation of early vol. of sawn lumber/ anti-stain lumber orders (m3).
BV1/BV2 : The summation of late vol. of sawn lumber/ anti-stain lumber orders (m3).
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  Appendix A: Plan (PL) model

Objective function 

𝑀𝑖𝑛 : ijks ijks ijU Logprice×∑ + os os sIAT Ciat×∑  + 

d _ sw Sawing _ cost ijks ijks iU Pro× ×∑  + s osW _ at Prod _ at _o At cost× ×∑
(1)

Subject to:

_ _ijks ijks ijkos osU Yiel sw V sa× =∑      , 1o s∀ = (2)

1_ _  _ijks ijks ijkos os osU Yiel sw V sa B gr −× = +∑    , 1o s∀ > (3)

_ _ijks ijks i sU Prod sw Cap saw× ≤∑     s∀  (4)

_ _  0os oj osV sa ISA W at− − =    , 1o s∀ =    (5)

1_ _ _ 0os os os os osV sa ISA ISA B gr W at−+ − + − =     , 1o s∀ > (6)

_ _ _os o osW at Yield at V at× =      , 1o s∀ =   (7)

1_ _ _ _os o os osW at Yield at V at B at −× = +    , 1o s∀ >   (8)

1_ _os os osV at IAT D at−+ =    , 1o s∀ =   (9)

1_ _ _os os os os osV at IAT IAT B at D at−+ − + =    , 1o s∀ >        (10)

_ _ _os os o sW at Prod at Cap at× ≤∑       s∀    (11)

_ 0osB gr =      , 6o s∀ =      and     _ 0osB at =      , 6o s∀ =       (12)

0osISA =      , 6o s∀ =   (13)

0osITA =      , 6o s∀ =   (14)

Sawing _ time Prod _ swi ijks ijks iU= ×∑     i∀ (15)

At _ time _ Prod _ at  o s os oW at= ×∑     s∀   (16)

𝐿𝑜𝑔 𝑐𝑜𝑠𝑡: 𝐿𝑜𝑔_𝑐𝑜𝑠𝑡= ijks ijks ijU Logprice×∑   (17)

𝐿𝑜𝑔 𝑖𝑛𝑝𝑢𝑡: 𝐿𝑜𝑔_𝑖𝑛𝑝𝑢𝑡= ijks ijksU∑   
 

(18)

𝑆𝑎𝑤𝑖𝑛𝑔 𝑐𝑜𝑠𝑡: 𝑆𝑎𝑤𝑖𝑛𝑔_𝑐𝑜𝑠𝑡= _ _i iSawing time Sawing cost×∑   (19)

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡: 𝐴𝑡_𝑐𝑜𝑠𝑡= _ _o ot time At costA ×∑ (20)

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦: 𝐿𝑢_𝑔𝑟_𝑖𝑐𝑜𝑠𝑡= os os sCISA isa×∑ (21)

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑛𝑡𝑖𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦: 𝐿𝑢_𝑎𝑡_𝑖𝑐𝑜𝑠𝑡= os os sCIAT iat×∑    (22)

𝐺𝑟𝑒𝑒𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐺𝑅𝑉𝐿𝑢𝑚𝑏𝑒𝑟= _os osV a∑   (23)

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐴𝑇𝐿𝑢𝑚𝑏𝑒𝑟= _os osV at∑   (24)

𝐺𝑟𝑒𝑒𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑: 𝐴𝑇_𝐷𝑒𝑚𝑎𝑛𝑑= _os osD at∑ (25)

𝐵𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑔𝑟𝑒𝑒𝑛 𝑙𝑢𝑚𝑏𝑒𝑟∶ _1 os osBB grV =∑ (26)

𝐵𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟∶ _2 os osBB atV =∑ (27)

The objective function (1) minimizes the lumber manufacturing costs, which are: log costs, sawn and 
anti-stain treated lumber inventory costs, and sawing and anti-stain processing costs. Backlogs were allowed, 
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consequently, several constraints, and metrics to account for backlog volumes. The model constraints are 
constraints (2) and (3), which ensure that the production of sawn lumber products for period 1, and for periods 
>1 includes backlogs from the previous period. The sawmilling capacity constraint (4), the summation of 
the time expended to saw logs, cannot exceed sawing capacity per period; the flow balance constraint (5) for 
period 1, the sawn lumber production less the period inventory is transferred to the anti-stain process. The flow 
balance constraint (6) for periods >1, ensures that the flow of sawn lumber products from the sawmill to the 
anti-stain treatment process includes the backlogs. The anti-stain treated production for period 1 (7), where 
sawn lumber products are processed with anti-stain yields to produce anti-stain lumber products; constraint 
(8) ensures that the production of anti-stain lumber for periods >1 includes backlogs from the previous period; 
constraint (9) is the market constraint for period 1; constraint (10) ensures that the demand of anti-stain lumber 
products for periods >1 includes inventory variation and backlogs; constraint (11) is anti-stain process capacity 
constraint; constraint (12), (13), and (14) ensures no backlogs, sawn lumber products inventory and anti-stain 
lumber products inventory for the final period; constraints (15) and (16) determine the sawing time, and anti-
stain process time; constraints (17) to (27) are model metrics, finally, all variables must be non-negative.

Appendix B:  Plan-sched (PS) model

The PS model does not work with lumber products demand by periods. Instead, it works with orders 
containing a set of lumber, which should be satisfied on certain due dates. However, as the objective of this 
research was to test S, E, and L static heuristic schedules, the model solves the problem with only these 
predetermined schedules. The PS model accepts overdue orders, which means delays in hours of a certain 
order relative to its due date. Accordingly, orders must be processed with a sequence, which was the E, L, and 
S static heuristic schedules.

Variables, constraints, and metrics were added to account for backlogged volumes due to orders delays. 
Delays were transformed in volumes by using sawing and anti-stain process productivity, which enabled to 
compare backlogged volumes between the formulation of models PL and PS. In such a formulations overdue 
orders and their equivalent backlogs volumes were not penalized. 

For a better understanding, the production of sawn lumber did not have an explicit demand or due date but 
was driven by the demand and delivery date of the final product. Consequently, the metrics were always based 
on the production of stain lumber wood products. The PS formulation follows: 

Objective function

𝑀𝑖𝑛: ijkp ijkp ijU Logpricet×∑ +

1  2p p p p p pTfea Cisa Tfea CiatGrV GrV× × + × ×∑ ∑ + 

_ _  p pSawing time Sawing cost×∑ + _ _p ptime At costAt ×∑   

(30)

Subject to:

, , , , , , ,_ _ijkp i j k p i j k o p oU Yield sw V sa× =∑   ,p o∀ (31)

, , , _ _  0ijkp i j k p iU Prod sw Cap sw× − ≤∑     p∀ (32)

, , , Prod _ sw A1 B1 d _ at 0ijkl i j k l i p p pU × + − − ≤∑     p, l 1 p∀ = … (33)

, , ,V _ sa IOLuSA W _ at 0p o p o p o− − =     p,o∀   (34)

, ,W _ at Yield _ at V _ at 0p o o p o× − =        p,o∀  (35)

, Prod _ at A2 B2 d _ at 0_l l o o p p poW at × + − − ≤∑    

 l 1 p,o∀ = …    
(36)

, p,oV _ at IOLuAT D _ at 0po p o+ − =       p,o∀   (37)

Tfea1 A1 / d _ atp p p=        p∀   (38)
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Tfea2 A2 / d _ atp p p=      p∀    (39)

Tfde1 B1 / d _ atp p p=     p∀   (40)

Tfde2 B2 / d _ at   p p p=    p∀    (41)

,_p oo pO D atV =∑         p∀   (42)

, _ __ pp oo o ProW a d at Cap att × =∑   p∀   (43)

, , ,p i j k p
ijkp

LogV U=∑      p∀   
(44)

poGrV D _ atp
po

=∑      p∀   
(45)

, ,Sawing _ time Prod _ swp i j k i
ijkp

U= ×∑     p∀    
(46)

At _ time _ Prod _ atp po o
o

W at= ×∑      p∀    
(47)

Ad _1 A1 / d _ at 100%p p p= ×    p∀     (48)

Ad _ 2 A2 / d _ at 100%p p p= ×    p∀   (49)

Ba _1 B1 / d _ at 100%p p p= ×    p∀    (50)

Ba _ 2 B2 / d _ at 100%p p p= ×    p∀    (51)

Ad _1_ vol Ad _1 GrV /100%p p p= ×    p∀   (52)

Ad _ 2 _ vol Ad _ 2 GrV /100%p p p= ×    p∀    (53)

pBa _1_ vol Ba _1 GrV /100%p p= ×     p∀    (54)

Ba _ 2 _ vol Ba _ 2 GrV /100%p p p= ×   p∀    (55)

Where:

𝐿𝑜𝑔 𝑐𝑜𝑠𝑡: Log _ cost  ijkp ijkp ijU Logpricet= ×∑  (56)

𝐿𝑜𝑔 𝑖𝑛𝑝𝑢𝑡: _ ijkp ijkpLog input U=∑ (57)

𝑆𝑎𝑤𝑖𝑛𝑔 𝑐𝑜𝑠𝑡: _ _ _p pSa cost time Sawing costSawing= ×∑   (58)

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡: 

_ _ _  p pAt cost time At tt sA co= ×∑  
(59)

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦

: _ _ 1p p pLu sa icost GrV Tfea Cisa= × ×∑   

(60)

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑛𝑡𝑖𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑖𝑛𝑣𝑒𝑛𝑡

: _ _ 2p p pLu at icost GrV Tfea Ciat= × ×∑  

(61)

𝑆𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛:  po poGRLumber V sa= −∑  
 

(62)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑠: 

po poGRBacklog B gr= −∑
(63)
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𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: po poATLumber V at= −∑  (64)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑔𝑒𝑑 𝑎𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑠

: po poATBacklog B at= −∑   

(65)

𝐴𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑: _ po poAT Demand D at= −∑   (66)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠s 𝑓𝑜𝑟 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: 

_ 01 1 / 6p pA A Ad=∑   

(67)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠s 𝑓𝑜𝑟 𝑎𝑛𝑡𝑖-𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: 

_ 2 2 / 6p pA AO Ad=∑   

(68)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦 𝑓𝑜𝑟 𝑠𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: 

_ 01 1 / 6p pA B Ba=∑    

(69)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦 𝑓𝑜𝑟 𝑎𝑛𝑡𝑖−𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟: _ 2 2 / 6p pA BO Ba=∑ (70)

𝑆𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑎𝑑𝑣𝑎𝑛𝑐𝑒: 1 _1_p pAV Ad vol=∑ (71)

𝐴𝑛𝑡𝑖 𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑎𝑑𝑣𝑎𝑛𝑐𝑒: 2 _ 2 _p pAV Ad vol=∑ (72)

𝑆𝑎𝑤𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑑𝑒𝑙𝑎𝑦: 1 _1_p pBV Ba vol=∑   (73)

𝐴𝑛𝑡𝑖 𝑠𝑡𝑎𝑖𝑛 𝑙𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑑𝑒𝑙𝑎𝑦: 2 _ 2 _p pBV Ba vol=∑ (74)

:       pGrV Volume sawnlumber produced toorder p   (75)
 

The objective function (30) minimizes lumber manufacturing costs, which are log costs, sawn lumber, and 
anti-stain inventory costs, plus sawing and anti-stain treatment costs. Additionally, a set of constraints were 
applied which were the following:

The sawn lumber production constraint (31), where logs of a certain diameter, and grade, are processed 
with a certain sawing pattern to produce certain lumber product o, to satisfy order p; the sawmilling capacity 
constraint (32), the summation of time to process logs of all orders cannot exceed sawing capacity in hours. 
Surplus and slack variables were added to the earliness constraint to make the solution feasible, the earliness 
constraint (33), ensures that the processing time of sawn lumber order p, and processing times of preceding 
orders can be lower or exceed the due date of order p. Thus, the surplus or slack variables capture the delay or 
earliness of each order. The flow balance equation (34), where the sawn wood production plus the sawn lumber 
inventory is transferred to the anti-stain process. The anti-stain treated production constraint (35), where sawn 
lumber is processed with certain anti-stain yields to produce certain anti-stain lumber products to satisfy order 
p. The earliness constraint (36) for anti-stain lumber orders, which ensures that the processing time of order 
p, and processing times of preceding orders must be ≤ to the due date of order p. Thus, the surplus or slack 
variables capture the delay or earliness of each order. The market constraint (37), which ensures that the anti-
stain lumber production plus the anti-stain inventory must be equal to the anti-stain lumber demand for all 
orders of anti-stain products.

Additionally, constraint (38) determines the time fraction of earliness of sawn order p (%) as the ratio 
between the earliness of order p (h), and its due date (h). Constraint (39) determines the time fraction of 
earliness of anti-stain lumber order p (%) as the ratio between the earliness of order p (h), and its due date (h). 
Constraint (40) determines the time fraction of delay of sawn lumber order p (h), and its due date (h). Constraint 
(41) determines the time fraction of delay of anti-stain lumber order p (h), and its due date (h). Constraint 
(42) determines the volume (in m3) of each anti-stain lumber product order. Constraint (43) ensures that the 
summation of the time expended to process sawn lumber orders does not exceed anti-stain process capacity. 
Constraint (44) determines the volume of logs consumed (m3) for order p. Constraint (45) determines the 
volume (m3) of order p of anti-stain lumber products. Constraint (46) determines the sawing processing time of 
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order p (h). Constraint (47) determines the anti-stain processing time of order p (h). Constraint (48) determines 
the ratio of earliness of order p of sawn lumber (%) in relation to its due date. Constraint (49) determines the 
ratio of earliness of order p of anti-stain lumber (%) in relation to its due date. Constraint (50) determines the 
ratio of delay of order p of sawn lumber (%) in relation to its due date. Constraint (51) determines the ratio of 
delay of order p of anti-stain lumber (%) in relation to its due date. Constraint (52) determines the volume of 
sawn lumber (m3) produced in advance of order p. Constraint (53) determines the volume of anti-stain lumber 
(m3) produced in advance of order p. Constraint (54) determines the backlog volume of sawn lumber (m3) 
produced for order p. Constraint (55) determines the backlog volume of anti-stain lumber (m3) produced for 
order p. Equations (56) to (75) are model metrics and manufacturing costs. Finally, all decision variables must 
be non-negative.


