The influence of road traffic and industrial plant-induced air pollution on the physical, mechanical, chemical, and morphological properties of the black pine wood

Suheyla Esin Koksal 1 https://orcid.org/0000-0001-7970-8412
Orhan Kelleci 1 https://orcid.org/0000-0003-4501-0854
Gül Tekingündüz 1 https://orcid.org/0000-0002-0785-6472
Deniz Aydemir 2 https://orcid.org/0000-0002-7484-2126

1 Bolu Abant Izzet Baysal University. Mudurnu Sureyya Astarcı Vocational School. Forestry Department. Bolu, Turkey.
2 Bartin University. Faculty of Forestry. Forest Industrial Engineering. Bartin, Turkey.

*Corresponding author: esinkoksal@ibu.edu.tr

Abstract:
Road traffic pollution and industrial plant-induced pollution affect negatively the development of forest trees. How forest trees are affected by their growing environment is important for sustainable environment. The study aimed to investigate the physical, mechanical, chemical, and morphological properties of the Pinus nigra (black pine) tree which grows under different conditions. Tree samples were chosen from three different lands where were inside the forest (O), near the roadside (Y), and near the factory (F). It was studied whether there were any significant differences among the “O”, “Y” and “F” in terms of their wood properties such as physical, mechanical, chemical, and morphological. As a result, the “O” samples demonstrated more regular annual ring structure. On the other hand, it was observed that the “Y” samples had longer and wider tracheid cells. In addition, “Y” samples had better mechanical strength than “O” and “F”. Environmental pollution caused the presence of some different elements (chlorine and iron) in “Y” and “F”. As a result, it was determined that the trees growing near the roadside or near industrial plants have significant differences from forest trees which are far away from pollutions. It is possible to say that Pinus nigra (black pine) is resistant to environmental stress. For this reason, it can be recommended to use it as a barrier to reduce air pollution on the roadssides.

Keywords: Black pine wood, industrial plant-induced air pollution, road traffic pollution, sustainable environment, wood characterization.

Received: 09.11.2022
Accepted: 25.04.2024

Introduction
The human population has increased rapidly; because of this, the pressure on the ecological balance has increased. This pressure especially affects forest resources. Human beings and rapid development in technology harm forests directly or indirectly. Trees that grow on roadsides or near industrial areas are greatly affected by these conditions.

Apart from these conditions, wood is also affected by many other parameters. The physical properties of the wooden material depend on the structure of the wood (density, chemical structure, cutting direction, fiber-load angle, earlywood/latewood, heartwood/sapwood), environmental effects (relative humidity, temperature, surrounding media, aggressive media), previous processes (drying method, impregnation). It varies depending on the test method (sample geometry, test type, test speed, load duration, static/dynamic testing).

In studies on the density distribution of trees, it has been reported that Douglas fir has a density between 420-490 kg/m³ (Maeglin et al. 1972) and radiata pine has a density between 390-470 kg/m³ (Delmastro et al. 1982), depending on geographical conditions (Walker 2006, Niemz et al. 2023).

Over the past decade, the effects of rapid climate changes thought to be caused by human activities on tree species have become the subject of increased research. Trees respond to human-based environmental stress such as decreased growth, increased heterogeneity in annual ring growth, and decreased sensitivity to short-term environmental impulses (Anderegg et al. 2015, Sensuła et al. 2021).

Trees are affected by the conditions in their environment (climate, soil, altitude). Forest trees have changed under the influence of environmental factors throughout their ecological history (Hamrick 2004, Oberhuber et al. 2015, Vospernik et al. 2018, Bosela et al. 2019, Leštianska et al. 2023.). Wood is produced by the vascular cambium, which is one of the meristematic cells.
of the tree. As cambium tissue divides and grows, it is affected by its immediate environment, genetic structure, climate, and the soil in which it is located.

Environmental conditions (climate and nutritional factors) change over (Niemz et al. 2023). As a result, these changes cause changes in the annual ring and chemical structure of the wood (Downes et al. 2008, R. You et al. 2021, Marais et al. 2022,). Leonelli et al. (2016) analyzed approximately five trees per km in 360 km of forestland in Upper Valtellina in the Italian Alps and analyzed 1814 trees to determine environmental factors limiting tree line height. They reported that 82% of trees were affected by geomorphological constraints, while only 3% of trees were affected by human influence.

The biochemical, morphological, and physiological characteristics of trees may be different in terms of their largeness and growing areas (Grote et al. 2016). For this reason, samples taken from the same tree species but grown in different areas may show different characteristics. Trees are in balance with their environment because they have naturally been adapted to forest ecosystem for centuries (Bussotti and Pollastrini 2021).

However, trees may be stressed due to human-based environmental influences. These stress factors can be listed such as soil pollution and air pollution. Trees located near the factory may be exposed to various chemicals, depending on the type of factory and whether it has filters or not. Thus, chemical stress factors occur distinctly from vehicle traffic stress.

Trees that grow by the roadside help to reduce particulate pollution caused by traffic (Ozdemir 2019), but the growth efficiency of trees is also reduced while helping to reduce pollution. It was reported that some trees (banyan (Ficus benghalensis L.), Eucalyptus sp., guaiac (Guaiacum officinale L.), button wood (Conocarpus erectus L.) were affected by the exhaust gases of vehicles. Thus, their leaf surface area, amount of chlorophyll in the leaves and the dry wood weights decreased.
However, some species neem (*Azadirachta indica* A. Juss.) have shown resistance to exhaust emissions (Bhatti and Iqbal 1988, Iqbal *et al.* 2015). Also, trees that grow close to industrial plants are adversely affected by environmental factors such as gases, factory chimneys, noise and dust. These effects may affect the fiber properties in the wood structure. The fiber properties of wood largely affect the suitability of the pulp and paper industry processing, as well as in sawmills (Paavilainen 1993). Also, fiber morphology and cell wall structure directly affect fiber flexibility, plasticity and processing resistance, and therefore, the strength and other physical and optical properties of the final products are affected (Seth and Page 1988).

In addition, wood density is also an important wood property related to the yield and quality of pulp and sawn products (Mäkinen and Hynynen 2012). Trees growing on the roadside are most exposed to urban stress factors (Sæbø *et al.* 2005). Joshi and Swami (2007) found in their study that roadside trees give physiological responses to vehicle pollution stress. It is thought that the difference between the ages of the samples with similar diameter and height values is related to the conditions of the habitat.

In their research, Dmuchowski *et al.* (2013) observed that the decline of trees was due to the gradual weakening of their vitality. They reported that trees growing near roads are generally more affected by human-induced environmental impacts. Disadvantages of the urban environment, such as salt sprinkled on the roads to prevent the roads from icing, constant changes in the city climate (high temperature, decreasing air humidity), traffic (high levels of smoke and dust), negatively affect the development of trees (Dmuchowski *et al.* 2013, Szypowski 2000).

Forest provides several benefits to society in ecological, economic, and social purposes. Thus, they must protect themselves for the next generation. This is also important for the planning of forests.
In this paper human-based environmental impacts were studied. The study aims to investigate the chemical, physical, mechanical, and morphological properties of black pine (*Pinus nigra* J.F. Arnold) tree which grow in the forest, near roadside, and near the factory. The selection of suitable tree species is very important in terms of sustainable forestry. In this context, it should be known how human-based environmental conditions such as roads and factories affect the growth of the trees.

At this point, using resistant species will be more ecologically effective. In the study, black pine (*Pinus nigra* J.F. Arnold) trees were selected since black pine (*Pinus nigra* J.F. Arnold) has the largest growing area in Türkiye after red pine (*Pinus brutia* Ten.) (OGM 2021).

Black pine (*Pinus nigra* J.F. Arnold) trees cover the Bolu district’s land by 59 % in Türkiye. Black pine (*Pinus nigra* J.F. Arnold) is one of most prevalent tree species in Bolu district (OGM 2021). Black pine (*Pinus nigra* J.F. Arnold) can grow under many different conditions. Therefore, it is widely used in the forest industry (Uner *et al.* 2009). In this study, black pine (*Pinus nigra* J.F. Arnold) samples were chosen from three different locations. The first tree was cut into the forest, the second one was cut near the road and the third one was cut in front of the factory. These trees were characterized from mechanical, physical, morphological, and chemical aspects according to relevant standards and then differences and similarities were statically revealed.

Materials and methods

Study field
In this study, black pine (*Pinus nigra* J.F. Arnold) trees were cut from three different regions (Figure 1). First was in the forest (O), second was near the roadside (Y) and third was in front of the factory (F) respectively. Trees were within the borders of Bolu district in Türkiye. “O” samples was 55 years old, 16,5 m height, 30 cm diameter, and 750 m inland from the road (D160). The second tree that is “Y” sample was near road side which responsibility belongs to the Sırçalı Forest Management/Mudurnu/Bolu/Türkiye. “Y” was 48 years old, 17 m height, and 30 cm diameter. Third tree that is “F” sample was in front of the factory which was from the No. 21 region which is under responsibility of Mudurnu Forest Management/Bolu/ Türkiye. This region was 165 m far from the main road. The tree was 22 years old, 16,5 m height, and 24 cm diameter. All samples (O, Y, F) were taken from northern front.

![Figure 1: Study field and O, Y, F samples taken points (Google maps 2022).](image)

Methods
The trees were cut on 09.12.2021 with the permission of Mudurnu Forestry Management. In the study, the “O” sample was coded as O(1), O(2), O(3), the “Y” sample was coded as Y(1), Y(2), Y(3), and the “F” sample was coded as F(1), F(2), F(3) according to height from the soil level. O(1), Y(1), F(1) represent 1.30 m – 1.80m height of the tree, O(2), Y(2), F(2) represent 1.80 m – 2.30m height of the tree and O(3), Y(3), F(3) represent 2.30 m – 2.80m height of the tree from the soil level. Samples were coded as “O”, “Y” and “F” for the chemical and morphological analysis. Elemental compositions and textural differences of the trees were revealed by performing SEM-EDX analyses. The diameter and height of the trees were arranged as same as possible (30 cm diameter and 16m height).

Figure 2: (a) roadside tree for Y samples, (b) particle board factory, F samples, (c) tree cutting by 50 cm, (d) logs were air dried, (e) wood disc, (f) Willey mill, (g) milled chips, (h) samples
were air dried, (i) bending and sheer test samples, (j) pressure test samples, (k) mechanical analysis.

Chemical analysis

Test samples were cut from tree body (Figure 2e) according to TAPPI T-264 (1997) standard which was used in the preparation of samples for chemical analysis. Barks of the samples were peeled and chopped manually. Then, chipped wood was ground in a Willey type mill (Figure 2f) and samples were sieved through a 60-mesh (Figure 2g) for chemical analysis. Chemical tests and related standards are given in Table 1. Analyses were performed in 3 repetitions and calculated as a percentage of the dry wood weight.

Table 1: Chemical analysis standards.

<table>
<thead>
<tr>
<th>Chemical analyses</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocellulose determination</td>
<td>Chlorite method¹</td>
</tr>
<tr>
<td>α-cellulose determination</td>
<td>²</td>
</tr>
<tr>
<td>Lignin determination</td>
<td>³</td>
</tr>
<tr>
<td>Alcohol solubility</td>
<td>⁴</td>
</tr>
<tr>
<td>Hot water solubility</td>
<td>⁵</td>
</tr>
<tr>
<td>Cold water solubility</td>
<td>⁶</td>
</tr>
<tr>
<td>1 % NaOH solubility</td>
<td>⁷</td>
</tr>
</tbody>
</table>

Physical and mechanical analysis

Test sample cutting and preparation processes were made according to TS EN 326-1 (1999) standard. Physical properties which were moisture (MC; n:40), density (DN; n:40), water absorption (WA; n:40), and thickness swelling (TS; n:40) analyses were performed according to TS EN 321(2005), TS EN 323 (1999), TS EN 321(2005) and TS ISO 13061-15 (2021) standards, respectively. Mechanical properties which were modulus of rapture (MOR; n:150), lap sheer strength (LSS; n:150), and pressure (PS; n:150) analyses were performed using TS EN 310 (1999), TS ISO 13061-8 (2022) and TS ISO 13061-5 (2021) standards, respectively.

Morphological properties

Maceration process was applied to wood samples to determine the morphological properties of wood fiber. For this purpose, chipped wood samples were treated with sodium chloride and acetic acid (Wise and John 1952). At the end of the process, individual fiber samples were placed between the lamel and lamella. The length and width of tracheid, lumen width and double wall thickness of the tracheid were investigated using the Olympus CX21 binocular light microscope. For tracheid lengths, x10 objective (1 division = 10 µm) and x40 objective (1 division = 2.5 µm) were used for other measurements. 100 random measurements for tracheid length and 50 measurements for other features were averaged.
Statistical analysis

SPSS 23 package program was used in the statistical evaluation of the data. One-way analysis of Variance (Anova) was used to determine whether a significant difference between the analysis results of the samples taken from different locations. Duncan, one of the post hoc tests, was used to determine the different sample groups.

Results and discussion

Chemical analysis results

In chemical analysis, holocellulose, α-cellulose and lignin main components of “O”, “Y” and “F” samples, as well as solubility in hot water, cold water, 1 % NaOH and alcohol, were determined (Table 2).

Table 2: Holocellulose, α-cellulose and lignin determination and some solubility of samples.
Table 2 demonstrates that there was no significant difference in the major contents of holocellulose, α-cellulose, and lignin of the “O”, “Y”, and “F” samples (p ≥ 0,05). The average holocellulose content is 72,7 %; 72,5 % and 71,9 % for “O”, “Y”, and “F”, respectively. The α-cellulose content is 50,8 %; 50,1 %; 47,5 % and the lignin content is 27,5 %; 27,1 % and 26,4 %. The results are like some studies (As et al. 2001, Guler et al. 2007, Kiliç et al. 2010).

However, it is feasible to see different results for the same species (Akyürek 2019).

Wood structure is affected by genetic, environmental, and anthropogenic factors that are effective during the formation of cells and tissues (Wodzicki 2001). Negative anthropogenic factors such as air pollution also cause biochemical reactions in trees (Judzentiene et al. 2007). The fact that no difference was detected in the main components of the study samples grown on the roadside and near the factory and exposed to air pollution in our study is an indication that air pollution does not affect these characteristics.

Krutul et al. (2014) reported that environmental pollution did not affect the cellulose and lignin content in oak samples. Also, Krutul et al. (2006) reported that lignin content in the wood taken from 1km and 21km from the power plant was higher than one in wood taken from the forest.

In another study, the characteristics of trees growing on the roadside and in the forest were investigated, and reported that the cellulose and lignin contents were in the area with the highest
environmental stress. In addition, it has been reported that the solute content in NaOH and EtOH is higher in urban agglomeration (Kusiak et al. 2020).

Figure 3: (a) Solubility of samples, (b) holocellulose, lignin, and alpha-cellulose determination of samples.

The differences between the solubility values of the “O”, “Y”, and “F” samples are shown in Figure 3. According to the statistical evaluation, it was observed that other solubility, except 1 % NaOH solubility, created significant differences (p ≤ 0.05). Solubility values are determinant of the amount of extractive substance in the wood. Hot and cold-water solubility, inorganic substances, sugars, tannins, polysaccharides, salts, dyestuffs, organic acids, phenolic compounds, gums, alcohol solubility, and flavonoid and stilbenes in wood are determined.

With 1 % NaOH solubility, low molecule-weighted carbohydrates, fragmented cellulose, and polyoses in wood are determined (Fengel and Wegener 1984). It was determined that the amount of extractive substance of “Y” samples was higher than that of “O” and “F” samples. Extractive substances have an important effect on the physical and mechanical properties of wood, as well as on properties such as permeability, durability, and adaptation to external weather conditions (Sivrikaya et al. 2011). Based on this, it can be said that the increase in the amount of extractive substance in the Y sample may be caused by road pollution.
In a similar study, Krutul et al. (2014) found that the amount of extractive substance in oak trees grown in a polluted environment increased by 2%. Contrary to our study, Krutul et al. (2011) stated that environmental pollution also significantly affects 1% NaOH solubility in birch. A similar result was also reported by Waliszewska et al. (2019). Depending on the results of the studies, extractive substances show a protective feature against environmental pollution as well as natural resistance.

Physical analysis results

Table 3 shows that there is no significant difference between the moisture (MC) values (8% - 9%) of the samples, but there are significant differences in density, water absorption (WA), and thickness swelling (TS) values both within and between groups. When Figure 4a is examined, it is seen that the lowest density sample (460 kg/m³) is "O". The densities of “F” and “Y” samples are 480 kg/m³ and 490 kg/m³ respectively.

As the wood density decreases, more water molecules can bind between the cellulose molecules. This phenomenon causes to increase in the moisture content (MC) of the wood. There is an interaction among density and water uptake (Niemz et al. 2023). The results obtained confirm that the MC increases as the density decreases. Bal and Bektaş (2018) obtained similar results in their study. In terms of WA and TS values, there are significant differences between the samples (except 24 h WA). It is seen that WA and TS values of “O” are higher than those of “Y” and “F” (Figure 4b). It can be said that the reason for this is the density of the “O” sample is lower than the others (Figure 4a).
Table 3: Some physical properties of wood samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>DN (Dry) (kg/m³)</th>
<th>MC (%)</th>
<th>2-hour TS (%)</th>
<th>2-hour WA (%)</th>
<th>24-hour TS (%)</th>
<th>24-hour WA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sig. = 0.001</td>
<td>Sig. = 0.001</td>
<td>Sig. = 0.001</td>
<td>Sig. = 0.014</td>
<td>Sig. = 0.006</td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>450 A (± 30)</td>
<td>8.6 A (± 1.2)</td>
<td>6.01 BC (± 0.01)</td>
<td>61 D (± 0.02)</td>
<td>6.4 AB (± 0.01)</td>
<td>72 C (± 0.03)</td>
</tr>
<tr>
<td>O(2)</td>
<td>450 A (± 20)</td>
<td>8.8 A (± 1.4)</td>
<td>6.6 CD (± 0.01)</td>
<td>60 D (± 0.18)</td>
<td>6.8 B (± 0.01)</td>
<td>70 BC (± 0.12)</td>
</tr>
<tr>
<td>O(3)</td>
<td>470 A (± 40)</td>
<td>9.3 A (± 1.1)</td>
<td>6.5 7 (± 0.01)</td>
<td>57 CD (± 0.09)</td>
<td>6.9 B (± 0.01)</td>
<td>71 BC (± 0.11)</td>
</tr>
<tr>
<td>Y(1)</td>
<td>480 AB (± 20)</td>
<td>7.9 A (± 1.2)</td>
<td>4.9 B (± 0.01)</td>
<td>48 AB (± 0.08)</td>
<td>5.8 A (± 0.01)</td>
<td>65 AB (± 0.05)</td>
</tr>
<tr>
<td>Y(2)</td>
<td>500 BC (± 30)</td>
<td>7.6 A (± 1.5)</td>
<td>5.3 B (± 0.01)</td>
<td>46 AB (± 0.05)</td>
<td>6.5 AB (± 0.01)</td>
<td>63 AB (± 0.06)</td>
</tr>
<tr>
<td>Y(3)</td>
<td>510 C (± 20)</td>
<td>7.7 A (± 1.3)</td>
<td>6.4 CD (± 0.01)</td>
<td>50 BC (± 0.06)</td>
<td>6.9 B (± 0.01)</td>
<td>63 AB (± 0.04)</td>
</tr>
<tr>
<td>F(1)</td>
<td>46 7 (± 30)</td>
<td>8.4 A (± 1.2)</td>
<td>3.9 A (± 0.01)</td>
<td>48 AB (± 0.13)</td>
<td>5.7 A (± 0.01)</td>
<td>69 BC (± 0.08)</td>
</tr>
<tr>
<td>F(2)</td>
<td>470 A (± 30)</td>
<td>8.4 A (± 1.4)</td>
<td>3.8 A (± 0.01)</td>
<td>44 AB (± 0.01)</td>
<td>5.7 A (± 0.01)</td>
<td>68 ABC (± 0.09)</td>
</tr>
<tr>
<td>F(3)</td>
<td>500 BC (± 40)</td>
<td>8.1 A (± 1.2)</td>
<td>4 A (± 0.01)</td>
<td>39 A (± 0.06)</td>
<td>6.2 AB (± 0.01)</td>
<td>60 A (± 0.04)</td>
</tr>
</tbody>
</table>

* Duncan analysis groups. (p≤0.05 of significant level).

The correlation between the mechanical strength value of a tree and its density can be expected to be higher in extracted wood compared to unextracted wood (Oliva et al. 2006). Similar results were obtained in the study.

Figure 4: (a) Moisture content (MC) and Density, (b) Thickness swelling (TS) and water absorption (WA) of the wood samples.
According to the physical results, it was determined that the wood sample taken from the forest showed more swelling to its thickness than the samples taken from the roadside and the factory. The water absorption is a negative feature of wood material. In this case, it can be said that the black pine (*Pinus nigra* J.F. Arnold) species is less affected by environmental stress that is it absorbs less water than forest trees.

The growth of black pine (*Pinus nigra* J.F. Arnold) on the roadside caused the tree to grow slowly, increase its density and, decrease the swelling rate accordingly. Considering that moisture exchange is an undesirable feature in wood material, but it is seen that growing on the roadside does not adversely affect the wood in terms of WA and TS. In fact, there was a positive effect according to the results.

The amount of swelling of the wood depends on the density of the wood and the diffusion of water into the wood. It determines the speed at which water moves from the surface into the interior of the wood. The porous structure and chemical components of wood affect the amount of swelling (Khazaei 2008). In their workbook, Niemz (2010) report that the maximum moisture content of kiln-dry wood decreases from 500 % to 50 % as the density increases from 200 kg/m³ to 1400 kg/m³.

Mechanical analysis results

According to the statistical results, it was determined that there were significant differences (p ≤ 0,05) between the MOR, MOE, LSS, and PS values of samples. Analysis results of mechanical properties are given in Table 4. MOR, MOE (Figure 5a) and PS (Figure 5b) values were highest (x_{MOR}: 73,7 MPa) in “Y” samples and lowest (x_{MOR}: 48,8 MPa) in “F” samples
determined. In contrast to the MOR, MOE and PS analyses, the “Y” sample received the lowest value in the LSS analysis (x_{LSS}: 5.1 MPa) (Figure 5b).

This may be due to the different adhesion strength of Polyvinyl acetate (PVA) glue used as an adhesive in LSS analysis, depending on wood densities. However, in some studies, it has been reported that wood with higher density has better adhesion resistance or density does not have a significant effect on adhesion (Atar 2007, Perçin et al. 2009).

Table 4: Some mechanical properties and statistical results of wood samples.

Samples	Flexural MOR (MPa)	Flexural MOE (MPa)	Lap shear strength (MPa)	Compressive strength (MPa)	Deformation (%)
	Sig. = 0.001	Sig. = 0.001	Sig. = 0.001	Sig. = 0.001	Sig. = 0.001
O (1)	76.9 F* (± 6.7)	4174 E (± 436)	5.9 BC (± 2.23)	48.7 EF (± 1.43)	1.62 AB (± 1.13)
O (2)	64.7 D (± 6.3)	3629 CD (± 390)	5.9 BC (± 1.43)	44.8 D (± 1.43)	1.32 A (± 0.26)
O (3)	67.95 D (± 7.2)	3747 D (± 434)	6.4 C (± 1.45)	43.6 D (± 1.43)	1.31 A (± 0.43)
Y (1)	73.1 E (± 8.5)	3476 CD (± 696)	5.2 AB (± 0.83)	49.38 F (± 1.43)	1.93 C (± 0.95)
Y (2)	82 G (± 9.8)	4270 E (± 933)	5.4 AB (± 2.39)	46.9 E (± 1.43)	1.43 AB (± 0.65)
Y (3)	66.2 D (± 12.7)	3498 CD (± 605)	4.6 A (± 1.82)	48.2 EF (± 1.43)	1.62 AB (± 0.71)
F (1)	55.6 C (± 9.1)	3363 C (± 736)	6.4 C (± 2.37)	31.2 A (± 1.43)	1.63 B (± 0.58)
F (2)	41.9 A (± 10.7)	2405 A (± 960)	4.7 A (± 1.54)	34.5 B (± 1.43)	1.49 AB (± 0.41)
F (3)	49.1 B (± 5.2)	2810 B (± 439)	5.6 ABC (± 1.63)	37.4 C (± 1.43)	1.52 AB (± 0.58)

*Duncan analysis groups. (p≤0.05 of significant level).
In other studies, it is reported that the quality of wood mainly depends on the density. (Kollmann et al. 1975, Pernestal et al. 1995, Oliva et al. 2006). It can be said that the higher density of the “Y” sample is the reason for the better mechanical properties (except LSS). However the same is not true for the F sample. Because although its density is higher than the “O” sample, its mechanical properties are lower.

The increase in density in F samples may have been caused by the excess of extractive substances other than wood tissues. Because although the “F” sample is younger than the “O” sample, it has grown faster, and its density is expected to be lower as a result. When the SEM images of the "F" samples are examined (Figure 8), it is seen that the wood tissues are more deteriorated than the "O" samples. It can be said that this causes the "F" samples to have lower mechanical strength than the "O" samples. More studies are needed on the effect of wood density and species on LSS resistance.

Figure 5: (a) Modulus of rupture (MOR) and Modulus of elasticity (MOE), (b) Lap shear strength (LSS) and Pressure strength (PS) of the wood samples.

Table 5: Specific mechanical properties of wood samples.
Specific mechanical properties were given in Table 5 which were calculated by dividing the mechanical properties by density for each sample due to the density difference. It was seen that specific mechanical properties are closely the same as Table 4. Thus, it can be said that density and mechanical properties were in direct proportion.

<table>
<thead>
<tr>
<th>Samples</th>
<th>MOR (MPa)</th>
<th>MOE (MPa)</th>
<th>Lap Sheer Strength (MPa)</th>
<th>Pressure strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O (1)</td>
<td>169,5</td>
<td>9198</td>
<td>13,0</td>
<td>107,3</td>
</tr>
<tr>
<td>O (2)</td>
<td>143,3</td>
<td>8040</td>
<td>13,1</td>
<td>99,3</td>
</tr>
<tr>
<td>O (3)</td>
<td>145,7</td>
<td>8034</td>
<td>13,7</td>
<td>93,5</td>
</tr>
<tr>
<td>Y (1)</td>
<td>153,8</td>
<td>7312</td>
<td>10,9</td>
<td>103,9</td>
</tr>
<tr>
<td>Y (2)</td>
<td>165,1</td>
<td>8595</td>
<td>10,9</td>
<td>94,4</td>
</tr>
<tr>
<td>Y (3)</td>
<td>129,3</td>
<td>6835</td>
<td>9,0</td>
<td>94,2</td>
</tr>
<tr>
<td>F (1)</td>
<td>121,0</td>
<td>7320</td>
<td>13,9</td>
<td>67,9</td>
</tr>
<tr>
<td>F (2)</td>
<td>90,0</td>
<td>5165</td>
<td>10,1</td>
<td>74,1</td>
</tr>
<tr>
<td>F (3)</td>
<td>97,2</td>
<td>5565</td>
<td>11,1</td>
<td>74,1</td>
</tr>
</tbody>
</table>

Morphologic analysis results

When the tracheid length and width of the wood samples were examined, it was determined that the tracheid lengths (3895 µm) and widths (48,15 µm) of the “Y” samples were higher than those of the “O” and “F” samples (Table 6). Similar results were obtained in lumen width and double wall thickness measurements. It was determined that the tracheids of “Y” samples were larger (7 % - 58 %) than the O and F samples. Similar results to O samples have been reported in different studies on black pine (Pinus nigra J.F. Arnold) tracheid measurements. (Doğu and Yılgör 2001, İstek et al. 2008, Köksal and Pekgözülü 2016). Reaction in wood formation shortens the tracheid length in the wood (Köksal and Pekgözülü 2016). In addition, it has been
reported that the length of the tracheids in wood up to the age of 75 is longer than the previous year and shorter in the following years (İstek et al. 2008). But here, the reaction in wood formation was not detected in O, Y, and wood samples.

Table 6: Morphological properties and statistical results of wood samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Tracheid length (µm) Sig. = 0,001</th>
<th>Tracheid width (µm) Sig. = 0,001</th>
<th>Lumen width (µm) Sig. = 0,211</th>
<th>Cell wall thickness (µm) Sig. = 0,004</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>3639 B* (± 448)</td>
<td>46,05 B (± 8)</td>
<td>30,8 A (± 12)</td>
<td>15,1 AB (± 7)</td>
</tr>
<tr>
<td>Y</td>
<td>3895 C (± 1098)</td>
<td>48,15 B (± 9)</td>
<td>30,9 A (± 13)</td>
<td>17,2 B (± 8)</td>
</tr>
<tr>
<td>F</td>
<td>2515 A (± 455)</td>
<td>39,6 A (± 9)</td>
<td>27,05 A (± 12)</td>
<td>12,7 A (± 5)</td>
</tr>
</tbody>
</table>

* Duncan analysis groups. (p≤0,05 of significant level).

The theory of variation of tracheid heights depending on tree age was not confirmed in this study. Despite the lower age of the “Y” samples, the tracheid lengths were longer (Figure 6). Which factor that occurs on the road side causes the prolongation of the tracheid lengths should be investigated with further studies.

Figure 6: Tracheid measurement results.
The determination of air pollution is made with some studies on the trees on the roadside (Shaheen et al. 2016, Wuyts et al. 2018). Some studies reported that Mn, Fe, Zn, Cu, Ni, Co, Pb, Ti, V, Cr, As, Zr, Mo, Se, Cd, Pt metals were detected in the tree leaves and outer surfaces of trees implanted near the road (Krupnova et al. 2021, Ram et al. 2015). Wang et al. (2019) reported that foreign particles accumulated 10 times more in the tree leaves on the roadside compared to the trees in the forest. However no more studies were done about the wooden inner parts of the tree. In this study, as seen in the EDAX analysis in Figure 7, the distribution of carbon (C), calcium (Ca), chlorine (Cl) and iron (Fe) elements on the wood surfaces is different.

![Figure 7: EDX analysis of wood samples, (a) “O” sample, (b) “Y” sample and (c) “F” sample.](image)

While Cl and Fe elements were not found in the sample taken from the forest, it was determined that there were Fe and Cl elements in the sample taken from across the factory. It can be said that environment pollution caused the Fe and Cl elements presence in the “Y” and “F” samples. It is thought that the sodium chloride salt sprinkled on the road surface in winter months to prevent icing causes the presence of Cl in the pine trees growing on the roadside.
Similarly, Kusiak et al. (2020) reported that Fe content in linden wood was found in urban agglomeration with the highest environmental stress. Krutul et al. (2014) also reported that oak wood taken from polluted environment contains approximately 2 times more Fe than wood taken from uncontaminated environment. However, the authors state that the high Fe content is due to the growing environment, not pollution. Exhaust emissions from vehicles may contain different amounts of Ni, Cu, Zn, Cd and Pb (Samara et al. 2003). The presence of these elements was not found in the wood samples taken from the roadside. Accordingly, it can be said that particle filters in vehicles are effective in preventing pollution.

Figure 8: “O” sample cross (a), radial (b), tangential (c) section, “Y” sample cross (d), radial (e), tangential (f) section, “F” sample cross (g), radial (h), tangential (i) section.
When the SEM images were examined, it was determined that the macroscopic tissues of the wood taken from the forest were more uniform (Figure 8a) than the macroscopic textures of the wood taken from the roadside (Figure 8d) and from the factory (Figure 8g). In some studies, (Maher et al. 2013, Mitchell and Maher 2009, You et al. 2021), particle aggregation can be seen on tree leaves in SEM images, but no particle aggregation was found in the wood part of the tree in this study.

Conclusions

It has been reported in many studies that environmental pollution causes the accumulation of heavy metals in the bark and leaves of trees. However, it has not been investigated whether the wood properties of trees are also affected by air pollution. In this study, physical, mechanical, chemical, and morphological differences between wood samples obtained from black pine (Pinus nigra J.F. Arnold) trees growing naturally on the roadside, in front of the factory and in the forest were examined. Overall, it can be concluded, there is no significant difference in the amount of holocellulose, \(\alpha \)-cellulose, and lignin between the trees growing on the roadside and the tree growing in the forest. On the other hand, it was determined that the amount of extractive substance was high in the wood of the tree growing on the roadside.

Trees grown by the roadside have higher density and lower thickness swelling value depending on the growth condition.

The mechanical strength of the tree growing by the roadside is higher due to its high density.
The longest and widest tracheids were in the trees growing on the roadside.

Tree samples grown in the forest have a more uniform annual ring formation than grown near the roadside.

Environmental stress causes chlorine in trees growing by the roadside and both chlorine and iron in trees growing near the factory.

Based on the findings, it can be concluded that black pine (*Pinus nigra* J.F. Arnold) is a resistant specie to grow under environmental stress. These trees can be grown near the highway as a barrier to noise and pollution.

Authorships contribution

S. E. K.: Conceptualization, methodology, data curation, formal analysis, writing - original draft. O. K.: Conceptualization, methodology, data curation, formal analysis, writing - original draft. G. T.: Methodology, formal analysis, project administration, writing - review & editing.

D. A.: Conceptualization, methodology, data curation, writing - review & editing.

References:

TAPPI. 2018. Technical Association for the Pulp, Paper, and converting Industry, One percent sodium hydroxide solubility of wood and pulp. TAPPI 1997. T 212: Atlanta, GA.

Waliszewska, B.; Mleczek, M.; Zborowska, M.; Goliński, P.; Rutkowski, P.; Szentner, K. 2019. Changes in the chemical composition and the structure of cellulose and lignin in elm...

