Effects of thermal treatment and weathering in the resistance against termites of a fast-growing pine wood
Keywords:
Accelerated aging, artificial weathering, biodegradation, subterranean termites, thermal treatmentAbstract
This work deals with the resistance against subterranean termites of a thermally treated and weathered fast-growing pine wood. The pine wood was thermally treated at variable temperatures (c.a. 180 ºC, 200 ºC, and 220°C) for 2 h and then exposed to artificial weathering for three months. Chemical, hygroscopic, thermal, mechanical, colorimetric, biological, and morphological characteristics were evaluated. Compared to the untreated wood, as expected, the thermal treatments yielded wood parts with improved thermal, hygroscopic and colorimetric features. The thermal treatment also helped for retaining the thermal stability, volumetric hydrophobicity, color, and roughness of the pine wood exposed to the weathering. Previous changes ascribed to the weathering process did not affect the damages attributed to the termites attack, although that wood treated at 180 ºC presented an increased resistance against the termites deterioration.
Downloads
References
Acosta, A.P.; Diaz, R.H.; Amico, S.C.; Beltrame, R.; Barbosa, K.T.; Delucis, R.A.; Gatto, D.A. 2022. Effect of the temperature of the heat treatment of pine wood on subsequent in situ polymerization with poly(methyl methacrylate). Biofuel Bioprod Biorefin 17(3): 499–509. https://doi.org/10.1002/bbb.2451
Acosta, A.P.; Labidi, J.; Barbosa, K.T.; Cruz, N.; Delucis, R.A.; Gatto, D.A. 2020. Termite resistance of a fast-growing pine wood treated by in situ polymerization of three different precursors. Forests 11(8): 865. https://doi.org/10.3390/f11080865
Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 221: 36–49. https://doi.org/10.1016/j.micres.2019.02.001
Aramburu, A.B.; Guidoti, A.B.; Schneider, D.M.; Cruz, N.D.; de Avila-Delucis, R. 2022. Colour of polyurethane foams filled with wood and wood derivatives exposed to two xylophagous fungi. J Cell Plast 58(3): 541–553. https://doi.org/10.1177/0021955X221074608
de Avila-Delucis, R.; Beltrame, R.; Gatto, D.A. 2019. Discolouration of heat-treated fast-growing eucalyptus wood exposed to natural weathering. Cellul Chem Technol 53(7–8): 635–641. https://www.cellulosechemtechnol.ro/pdf/CCT7-8(2019)/p.635-641.pdf
Bak, M.; Molnár, F.; Németh, R. 2019. Improvement of dimensional stability of wood by silica nanoparticles. Wood Mater Sci Eng 14(1): 48–58. https://doi.org/10.1080/17480272.2018.1528568
Boonstra, M.J. Van-Acker, J.; Tjeerdsma, B.F.; Kegel, E. V. 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7): 679–690. http://hdl.handle.net/1854/LU-744076
Boonstra, M.J.; Rijsdijk, J.F.; Sander, C.; Kegel, E.; Tjeerdsma, B.; Militz, H.; Van- Acker, J.; Stevens, M. 2006. Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas-Cienc Tecnol 8(3): 193–208. http://dx.doi.org/10.4067/S0718-221X2006000300006
Che, W.; Xiao, Z.; Wang, Z.; Nguyen, T.T.; Xie, Y. 2019. Enhanced Weathering Resistance of Radiata Pine Wood by Treatment with an Aqueous Styrene/Acrylic Acid Copolymer Dispersion. J Wood Chem Technol 39(6): 421–435. https://doi.org/10.1080/02773813.2019.1636824
Delucis, R. de A.; Magalhães, W.L.E.; Petzhold, C.L.; Amico, S.C. 2018. Thermal and combustion features of rigid polyurethane biofoams filled with four forest-based wastes. Polym Compos 39 (S3): E1770–E1777. https://doi.org/10.1002/pc.24784
Delucis, R. de A.; Missio, A.L.; Pertuzzatti, A.; De Cademartori, P.H.G.; Gatto, D.A. 2014. Propriedades físicas e colorimétricas da madeira termorretificada de Pinus elliottii var. elliottii. FLORAM 42(104): 555–563. http://dx.doi.org/10.4322/floram.2014.008 (In Portuguese)
Delucis, R.D.A.; Diaz, R.H.; Amico, S.C.; Labidi, J.; Gatto, D.A. 2017. Comparative study of weathering behavior of four fast-growing eucalyptus species. Cellul Chem Technol 51(9–10): 889–898. https://www.cellulosechemtechnol.ro/pdf/CCT9-10(2017)/p.889-898.pdf
Ding, Y.; Ezekoye, O.A.; Lu, S.; Wang, C., 2016. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers Manag 120: 370–377. https://doi.org/10.1016/j.enconman.2016.05.007
Esteves, B.M.; Herrera, R.; Santos, J.; Carvalho, L.; Nunes, L.; Ferreira, J.; Domingos, I.J.; Cruz-Lopes, L. 2020. Artificial Weathering of Heat-treated Pines from the Iberian Peninsula. BioResorces 15(4): 9642–9655. https://bioresources.cnr.ncsu.edu/resources/artificial-weathering-of-heat-treated-pines-from-the-iberian-peninsula/
Esteves, B.M.; Pereira, H.M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370–404. https://bioresources.cnr.ncsu.edu/BioRes_04/BioRes_04_1_0370_Esteves_P_Wood_Mod_Heat_Treatment_Rev_367.pdf
Frybort, S.; Obersriebnig, M.; Müller, U.; Gindl-Altmutter, W.; Konnerth, J. 2014. Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids Surf A: Physicochem Eng 457: 82–87. https://doi.org/10.1016/j.colsurfa.2014.05.055
Gallio, E.; Zanatta, P.; Cruz, N.D.; Zanol, G.S.; Schulz, H.R.; Gatto, D.A. 2019. Influence of thermal rectification and furfurylation treatments on technological properties of a conifer. Rev Mater 24(3). https://doi.org/10.1590/S1517-707620190003.0739
Gallio, E.; Zanatta, P.; Gatto, D.A.; Beltrame, R. 2018. Fourier transform infrared spectroscopy in treated woods deteriorated by a white rot. Maderas-Cienc Tecnol 20(3): 479–488. http://dx.doi.org/10.4067/S0718-221X2018005031701
Hadi, Y.S.; Massijaya, M.Y.; Arinana, A. 2016. Subterranean termite resistance of polystyrene-treatedwood from three tropicalwood species. Insects 7(3): 6–11. https://doi.org/10.3390/insects7030037
He, L.; Zhang, T.; Zhao, X.; Zhao, Y.; Xu, K.; He, Z.; Yi, S. 2023. Synergistic effect of tung oil and heat treatment on surface characteristics and dimensional stability of wood. Colloids Surf A: Physicochem Eng 665: 131233. https://doi.org/10.1016/j.colsurfa.2023.131233
Herrera, R.; Sandak, J.; Robles, E.; Krystofiak, T.; Labidi, J. 2018. Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Progress in Organic Coatings 119: 145–154. https://doi.org/10.1016/j.porgcoat.2018.02.015
Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Torres-Mella, J.; Salvo-Sepúlveda, L.; Llano-Ponte, R.; Salinas-Lira, C.; Peredo, M.; Ananías, R.A. 2019. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. Eur J Wood Prod 77(4): 661–671. https://doi.org/10.1007/s00107-019-01424-9
Hill, C.; Altgen, M.; Rautkari, L. 2021. Thermal modification of wood - a review : chemical changes and hygroscopicity. J Mater Sci 56 (11): 6581–6614. https://doi.org/10.1007/s10853-020-05722-z
Hill, C.; Kymalainen, M.; Rautkari, L. 2022. Review of the use of solid wood as an external cladding material in the built environment. J Mater Sci 57:9031–9076. https://doi.org/10.1007/s10853-022-07211-x
Jirouš-Rajković, V.; Miklecić, J. 2021. Enhancing Weathering Resistance of Wood — A Review. Polymers 13: 1980. https://doi.org/10.3390/polym13121980
Kamperidou, V. 2019. The biological durability of thermally-and chemically-modified black pine and poplarwood against basidiomycetes and mold action. Forests 10(12):1111. https://doi.org/10.3390/f10121111
Krystofiak, T.; Can, A.; Lis, B., 2022. Investigation of Roughness and Adhesion Strength Properties of Pine and Poplar Wood Heat Treated in Air and under Vacuum after Artificial Aging. Coatings 12 (1910). https://doi.org/10.3390/coatings12121910
Kuka, E.; Andersons, B.; Cirule, D.; Andersone, I.; Kajaks, J.; Militz, H.; Bicke, S. 2020. Weathering properties of wood-plastic composites based on heat-treated wood and polypropylene. Compos Part A: Appl Sci Manuf 139:106102. https://doi.org/10.1016/j.compositesa.2020.106102
Kymäläinen, M.; Lourençon, T. V.; Lillqvist, K. 2022. Natural weathering of soft ‑ and hardwoods modified by contact and flame charring methods. EurJ Wood Prod 80: 1309–1320. https://doi.org/10.1007/s00107-022-01864-w
Laina, R.; Sanz-Lobera, A.; Villasante, A.; López-Espí, P.; Martínez-Rojas, J.A.; Alpuente, J.; Sánchez-Montero, R.; Vignote, S. 2017. Effect of the anatomical structure, wood properties and machining conditions on surface roughness of wood. Maderas-Cienc Tecnol 19(2): 203–212. http://dx.doi.org/10.4067/S0718-221X2017005000018
Lee, S.H.; Ashaari, Z.; Lum, W.C.; Abdul Halip, J.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Md-Tahir, P. 2018. Thermal treatment of wood using vegetable oils: A review. Constr Build Mater 181: 408–419. https://doi.org/10.1016/j.conbuildmat.2018.06.058
Lengowski, E.C.; Júnior, E.A.B.; Nisgoski, S.; Muñiz, G.I.B.; Klock, U. 2021. Properties of thermally modified teakwood. Maderas-Cienc Tecnol (23): 1–16. http://dx.doi.org/10.4067/s0718-221x2021000100410
Lovaglio, T.; Auria, M.D.; Gindl-altmutter, W.; Giudice, V. L.; Langerame, F.; Salvi, A.M.; Todaro, L. 2022. Thermal Modification and Alkyl Ketene Dimer Effects on the Surface Protection of Deodar Cedar ( Cedrus deodara Roxb .) Wood. Forest 13(10). 1551. https://doi.org/10.3390/f13101551
Mattos, B.D.; Lourençon, T. V.; Gatto, D.A.; Serrano, L.; Labidi, J. 2016. Chemical characterization of wood and extractives of fast-growing Schizolobium parahyba and Pinus taeda. Wood Mater Sci Eng 11(4): 209–216. https://doi.org/10.1080/17480272.2014.970574
Missio, A.L.; Bayer, F.M.; Gatto, D.A.; Cademartori, P.H.G. 2014. Sampling sufficiency of the anatomical characteristics of Brazilian hardwood using the resampling method. Acta Scientiarum. Technology 36 (3): 413. https://doi.org/10.4025/actascitechnol.v36i3.20335
Missio, A.L.; Mattos, B.D.; De Cademartori, P.H.G.; Gatto, D.A. 2016. Effects of Two-Step Freezing-Heat Treatments on Japanese Raisintree (Hovenia dulcis Thunb.) Wood Properties. J Wood Chem Technol 36(1): 16–26. https://doi.org/10.1080/02773813.2015.1039544
Missio, A.L.; Mattos, B.D.; Cademartori, P.H.G.; Pertuzzatti, A.; Conte, B.; Gatto, D.A. 2015. Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochim Acta 615: 15–22. https://doi.org/10.1016/j.tca.2015.07.005
Nguyen, T.T.; Nguyen, T.H.; Ji, X.; Yuan, B.; Mai, H.; Khoa, T.; Lanh, T. 2019. Prediction of the color change of heat ‑ treated wood during artificial weathering by artificial neural network. Eur Journal Wood Prod 77(6): 1107–1116. https://doi.org/10.1007/s00107-019-01449-0
Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. 2017. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim Acta A: Mol Biomol Spectrosc 171: 395–400. https://doi.org/10.1016/j.saa.2016.08.026
Pandey, K.K.; Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52(3): 151–160. https://doi.org/10.1016/S0964-8305(03)00052-0
Peng, Y.; Wang, Y.; Zhang, R.; Wang, W.; Cao, J. 2021. Industrial Crops & Products Improvement of wood against UV weathering and decay by using plant origin substances : Tannin acid and tung oil. Ind Crops Prod 168: 113606. https://doi.org/10.1016/j.indcrop.2021.113606
Peres, M.L.; de Avila-Delucis, R.; Beltrame, R.; Gatto, D.A. 2020. Hydrothermal treatments to promote surface inactivation and increased flexibility in three hardwoods. Maderas-Cienc Tecnol 22(4): 439–446. http://dx.doi.org/10.4067/S0718-221X2020005000402
Popescu, C.M.; Spiridon, I.; Tibirna, C.M.; Vasile, C. 2011. A thermogravimetric study of structural changes of lime wood (Tilia cordata Mill.) induced by exposure to simulated accelerated UV/Vis-light. J Photochem Photobiol A: Chemistry 217(1): 207–212. https://doi.org/10.1016/j.jphotochem.2010.10.010
Poubel, D.; Garcia, R.A.; Dos-Santos, W.A.; Oliveira, G. L.; Abreu, H. S. 2013. Efeito da termorretificação nas propriedades físicas e químicas da madeira de Pinus caribaea. Cerne 19(3): 391–398. https://doi.org/10.1590/S0104-77602013000300005
Pratiwi, L.A.; Darmawan, W.; Priadi, T. 2019. Characterization of thermally modified short and long rotation teaks and the effects on coatings. Maderas-Cienc Tecnol 21(2): 209–222. http://dx.doi.org/10.4067/S0718-221X2019005000208
Salman, S.; Thévenon, M.F.; Pétrissans, A.; Dumarçay, S.; Candelier, K.; Gérardin, P. 2017. Improvement of the durability of heat-treated wood against termites. Maderas-Cienc Tecnol 19(3): 317–328. http://dx.doi.org/10.4067/S0718-221X2017005000027
Sivrikaya, H.; Can, A.; De-Troya, T.; Conde, M. 2015. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas-Cienc Tecnol 17(3): 559–570. http://dx.doi.org/10.4067/S0718-221X2015005000050
Tomak, E.D.; Ustaomer, D.; Yildiz, S.; Pesman, E. 2014. Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 53: 30–39. https://doi.org/10.1016/j.measurement.2014.03.018
Yildiz, S.; Tomak, E.D.; Yildiz, U.C.; Ustaomer, D. 2013. Effect of artificial weathering on the properties of heat treated wood. Polym Degrad Stab 98 (8): 1419–1427. https://doi.org/10.1016/j.polymdegradstab.2013.05.004
Zhang, X.; Wang, F.; Keer, L. 2015. Influence of Surface Modification on the Microstructure and Thermo-Mechanical Properties of Bamboo Fibers. Materials 8(10): 6597–6608. https://doi.org/10.3390/ma8105327
Zhang, Y.; Yu, Y.; Lu, Y.; Yu, W.; Wang, S. 2021. Effects of heat treatment on surface physicochemical properties and sorption behavior of bamboo
(Phyllostachys edulis ). Constr Build Mater 282: 122683. https://doi.org/10.1016/j.conbuildmat.2021.122683
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.