Time-moisture superposition principle in creep behavior of white oak with various earlywood vessel locations


  • Yuge Zhang
  • Junfeng Hou
  • Haili Chen
  • Junjie Cen
  • Zhihong Jiang
  • Youming Yu


America white oak, earlywood vessel element, creep behavior, Quercus alba, time-moisture superposition principle


Creep behavior of wood plays a fundamental role in precision processing of wood. In this work, experimental creep tests have been conducted to determine the influence of earlywood vessel location and moisture content on creep behavior of white oak (Quercus alba). Time-moisture superposition principle was applied to predict long-term creep behavior of white oak. Results revealed that both of instantaneous and 45-min strain of specimens increased with the increasing of moisture content and decreased with increasing distance between earlywood vessel belt and load-bearing surface significantly. Additionally, the time-moisture superposition principle was found to have feasibility to predict creep behavior of white oak with various earlywood vessel locations and moisture content ranges (6 % - 18 %). We believe that the proposed investigation was beneficial for the processing precision and civil engineering applications of wood.


Download data is not yet available.


Báder, M.; Németh, R.; Konnerth, J. 2019. Micromechanical properties of longitudinally compressed wood. Eut J Wood Prod 77(3): 341-351.


Báder, M.; Németh, R.; Sandak, J.; Sandak, A. 2020. FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose 27(12): 6811-6829. https://doi.org/10.1007/s10570-020-03131-8

Chen, G.R. 2002. Elasticity. Hehai University Press, Nanjing, People’s Republic of China - (In Chinese).

Chen, Y.S.; Zhu, J. 2019. Study on bending characteristics of fast-growing Eucalyptus bookcase shelves by using burgers model. Wood Res-Slovakia 64(1): 137-144. http://www.woodresearch.sk/cms/study-on-bending-chracteristics-of-fast-growing-eucalyptus-bookcase-shelves-by-using-burgers-model/

Dlouhá, J.; Clair, B.; Arnould, O.; Horáček, P.; Gril, J. 2009. On the time-temperature equivalency in green wood: Characterization of viscoelastic properties in longitudinal direction. Holzforschung 63: 327-333.https://hal.archives-ouvertes.fr/hal-00437887

De, Borst, K., Bade, T. K., Wikete, C. 2012. Microstructure-stiffness relationships of ten European and tropical hardwood species. J Struct Biol177(2):532-542. http://doi.org/10.1016/j.jsb.2011.10.010

Engelund, E.T.; Svensson, S. 2011. Modeling time-dependent mechanical behavior of softwood using deformation kinetics. Holzforschung 65(2): 231-237. https://doi.org/10.1515/HF.2011.011

Gaff, M., Kačík, F.; Gašparík, M. 2019. Impact of thermal modification on the chemical changes and impact bending strength of European oak and Norway spruce wood. Compos Struct 216: 80-88. https://doi.org/10.1016/j.compstruct.2019.02.091

Hein, P. R. G., Lima, J. T. 2012. Relationships between microfibril angle, modulus of elasticity and compressive strength Eucalyptus wood. Maderas-Cienc Tecnol 14(3): 267-274. https://doi.org/10.4067/S0718-221X2012005000002

Hou, J.F.; Jiang, Y.Q.; Yin, Y.Q.; Zhang, W.G.; Chen, H.L.; Yu, Y.M.; Jiang, Z.H. 2021. Experimental study and comparative numerical modeling of creep behavior of white oak wood with various distributions of earlywood vessel belt. J Wood Sci 67(1): 57. https://doi.org/ 10.1186/s10086-021-01989-1

Hsieh, T.Y.; Chang, F.C. 2018. Effects of moisture content and temperature on wood creep. Holzforschung 72(12): 1071-1078. https://doi.org/10.1515/hf-2018-0056

Kabooorani, A.; Blanchet, P.A.L. 2013. A rapid method to assess viscoelastic and mechanosorptive creep in wood. Wood Fiber Sci 45: 370-382. https://wfs.swst.org/index.php/wfs/article/view/61

Kojima, Y.; Yamamoto, H. 2005. Effect of moisture content on the longitudinal tensile creep behavior of wood. J Wood Sci 51(5): 462-467. https://doi.org/10.1007/s10086-004-0676-5

Kutnar, A.; O’Dell, J.; Hunt, C.; Frihart, C.; Kamke, F.; Schwarzkopf, M. 2021. Viscoelastic properties of thermo-hydro-mechanically treated beech (Fagus sylvatica L.) determined using dynamic mechanical analysis. Eur J Wood Prod 79(2): 263-271. https://doi.org/10.1007/s00107-020-01629-3

Lichtenegger, L.; Reiterer, A.; Stanzl-Tschegg, S.E.; Fratzl, P. 1999. Variation of cellulose microfibril angles in softwoods and hardwoods-A possible strategy of mechanical optimization. J Struct Biol 128: 257-269. https://doi.org/10.1006/jsbi.1999.4194

Liu, C. 2016. The viscoelastic behavior of perpendicular to grain of birch plasticized by moisture, Master thesis. Hangzhou, Zhejiang A&F University, China. (In Chinese)

MATLAB 9.7 2019. MathWorks. INC, Natick City, Massachusetts, United States.

Moosavi, V.; Eslam, H.K.; Bazyar, B.; Najafi, A.; Talaeepoor, M. 2016. Bending creep behavior of Hornbeam wood. Wood Ind 67(4): 341-350. https://doi.org/10.5552/drind.2016.1609

Nakai, T.; Toba, K.; Yamamoto, H. 2018. Creep and stress relaxation behavior for natural cellulose crystal of wood cell wall under uniaxial tensile stress in the fiber direction. J Wood Sci 64(6): 745-750. https://doi.org/10.1007/s10086-018-1767-z

Navi, P.; Stanzil-Tschegg, S. 2008. Micromechanics of creep and relaxation of wood. A review COST Action E35 2004-2008: Wood machining-micromechanics and fracture. Holzforschung 63(2):186-195. https://doi.org/10.1515/HF.2009.013

Nimez, P., Teischinger, A., Sandberg, D. 2023. Springer handbook of wood science and technology. Springer Nature. https://doi.org/10.1007/978-3-030-81315-4

Peng, H.; Zhang, T.Y.; Jiang, J.L.; Zhang, Y.L.; Cao, J.Z.; Lu. J.X. 2021. Comparison of the time-moisture and time-temperature equivalences in the creep properties of Chinese fir. Wood Mater Sci Eng 17(6): 911-917. https://doi.org/10.1080/17480272.2021.1976273

Placet, V.; Passard, J.; Perré, P. 2007. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0 ºC - 95 ℃: Hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung 61(5): 548-557. https://doi.org/10.1515/HF.2007.093

Placet, V.; Cisse, O.; Boubakar, M.L. 2012. Influence of environmental relative humidity on the tensile and rotational behavior of hemp fibers. J Mater Sci 47(7): 3435-3446. https://doi.org/10.1007/s10853-011-6191-3

Roszyk, E.; Mania, P.; MoliŃski, W. 2012. The influence of microfibril angle on creep Scotch pine wood under tensile stress along the grains. Wood Res-Slovakia 57(3): 347-358. http://www.woodresearch.sk/wr/201203/01.pdf

Salmén, L. 2004. Micromechanical understanding of the cell-wall structure. CR BIOL 327(9-10): 873-880. https://doi.org/10.1016/j.crvi.2004.03.010

Sedighi Moghaddam, M.; Van den Bulcke, J.; Wålinder, M.E.P.; Claesson, P.M.; Van Acker, J.; Swerin, A. 2017. Microstructure of chemically modified wood using X-ray computed tomography in relation to wetting properties. Holzforschung 71(2): 119-128. https://doi.org/10.1515/hf-2015-0227

Song, K.Y. 2008. Study on the technology of longitudinal compressing and multi-dimensional bending of wood, Ph.D. thesis. Ha’erbin, Northeast Forestry University, People’s Republic of China. (In Chinese)

Song, K.Y.; Wang, F.H.; Song, Y.H. 2005. The techniques of F. MandhuRica, Longitudinal compression and bending. Furniture 5: 18-23. http://dor.org/10.16610/j.cnki.jiaju.2005.03.010

Thomas, L.H.; Forsyth, V.T.; Martel, A.; Grillo, I.; Altaner, C.M.; Jarvis, M.C. 2014. Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose 21(6): 3887-3895. http://doi.org/10.1007/s10570-014-0431-z

Wang, C.; Wu, Q.; Lin, P.; Yang, D.; Yu, Y.M. 2018. Orthotropic creep performance of small flawless oak board. Scientia Silvae Sinicae 54(4): 79-86. https://doi.org/10.11707/j.1001-7488.20180409

Wang, J.F.; Wang, X.; He, Q.; Zhang, Y.L.; Zhan, T.Y. 2020. Time-temperature-stress equivalence in compressive creep response of Chinese fir at high-temperature range.Constr Build Mater 235: 117809. https://doi.org/10.1016/j.conbuildmat.2019.117809

Wang, J.; Xu, W. 2014. Research status and development trend of the techniques of solid wood longitudinal compressing and bending. Furniture 35(5): 15-19. https://doi.org/10.16610/j.cnki.jiaju.2014.05.001 (In Chinese)

Wang, S.L. 2017. Research and application of Michael Thonet's wood bending techniques. Furniture & Interiors 5:16-17. (In Chinese)


Yin, Y.Q.; Hou, J.F.; Jiang, Z.H.; Yu, Y.M. 2021. Effect of earlywood vessel distribution on creep characteristics of ring-porous oak wood. J Fore Eng 6(3): 54-60. https://doi.org/10.13360/j.issn.2096-1359.202009045 (In Chinese)

Zhang, Y.; Tong, D.; Song, K.Y. 2013. Stress-strain constitutive relation of longitudinal compressed Fraxinus mandshurica Rupr. with hydrothermal-microwave treatment. J Nanjing Fore Univer (Natur Sci Edition) 37(4): 105-109. (In Chinese) http://nldxb.njfu.edu.cn/CN/Y2013/V56/I04/105




How to Cite

Zhang, Y. ., Hou, J. ., Chen, H. ., Cen, J. ., Jiang, Z. ., & Yu, Y. . (2023). Time-moisture superposition principle in creep behavior of white oak with various earlywood vessel locations. Maderas-Cienc Tecnol, 26. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/6100




Most read articles by the same author(s)