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RESUMEN 
El presente trabajo tiene por objetivo desarrollar un modelo matemático predictivo que otorgue un primer acercamiento al valor de 
requerimiento energético (RE) de un edificio en un clima templado continental, con el propósito de aportar al conocimiento teórico sobre 
herramientas de evaluación energética. Se realizaron simulaciones paramétricas procesadas con los programas EnergyPlus 9.5 y JePlus. 
Los resultados fueron utilizados como Dataset para el armado de diferentes modelos matemáticos, para los cuales se utilizó el programa 
SageMath a fin de desarrollar ecuaciones que predigan el RE de cada escenario. Se trabajó con modelos escalonando su complejidad 
en cuanto a métodos utilizados y cantidad de parámetros. Se seleccionó un modelo con bajo nivel de error (0.08) y 15 parámetros. Se 
advirtió que, si bien el aumentar la cantidad de parámetros acercaba los modelos al error 0.02, se corría el peligro de overfitting. El 
modelo seleccionado busca incorporar la precisión y validez de las simulaciones dinámicas a una herramienta de predicción sencilla y 
aplicable por profesionales de la construcción.

Palabras clave
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ABSTRACT
This work looks to build a predictive mathematical model that can provide a first approach to a building’s energy requirement (ER) value in a 
temperate continental climate. The aim is to contribute to the theoretical knowledge of energy assessment tools. To do this, parametric simulations 
were run and processed using the EnergyPlus 9.5 and JePlus programs. The results were then used as a dataset to build different mathematical 
models, using the SageMath program to run equations that predicted the ER of each scenario. Work was done with the models, scaling their 
complexity with the methods and the number of parameters used. Finally, a model with a low error (0.08) and 15 parameters was chosen. It was 
noted that, although increasing the number of parameters brought the models closer to a 0.02 error, there was a risk of overfitting. The chosen 
model seeks to incorporate dynamic simulations’ accuracy and validity into a simple prediction tool that construction professionals can apply.

Keywords
mathematical modeling, simulations, sustainable architecture

RESUMO
O objetivo deste trabalho é desenvolver um modelo matemático preditivo que possibilite uma primeira abordagem do valor dos requisitos de 
energia (ER) de um edifício em um clima continental temperado, de forma a contribuir para o conhecimento teórico das ferramentas de avaliação 
energética. As simulações paramétricas foram realizadas e processadas com os softwares EnergyPlus 9.5 e JePlus. Os resultados foram utilizados 
como Dataset para a construção de diferentes modelos matemáticos, para os quais foi utilizado o programa SageMath para desenvolver equações 
que preveem o ER de cada cenário. Trabalhamos com modelos que escalonam sua complexidade em termos de métodos utilizados e número 
de parâmetros. Foi selecionado um modelo com baixo nível de erro (0,08) e 15 parâmetros. Observou-se que, embora o aumento do número de 
parâmetros tenha aproximado os modelos ao erro de 0,02, havia o risco de sobreajuste. O modelo selecionado busca incorporar a precisão e a 
validade das simulações dinâmicas em uma ferramenta de previsão simples que pode ser aplicada por profissionais da construção.

Palavras-chave:
modelo matemático, simulações, arquitetura sustentável.
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INTRODUCTION
The construction sector contributes significantly 
to global energy demand. The energy intensity 
of buildings has stayed the same in recent years, 
remaining at 150kWh/m2. According to the estimates 
of the International Energy Agency (IEA), to achieve 
“net zero emissions,” it is necessary that the 
intensity decreases by approximately 35% compared 
to current levels and remains around 95 kWh/m2 
(International Energy Agency, 2022). Unfortunately, 
this has remained virtually unchanged since 2019 
(United Nations Environment Programme, 2022).

As the global population continues to grow, an 
increase in the energy demand from buildings is 
expected. One strategy to mitigate this situation 
is optimizing their energy efficiency, which can 
be addressed in their design, construction, and 
operation stages. Therefore, it is essential to have 
accurate forecasts of energy requirements, as it 
is becoming crucial to achieve significant energy 
savings in the construction sector (Chang et al., 
2019).

Timuçin and Wilde (2021) warn that, when 
designing, more attention should be paid to the 
holistic investigation of all factors to achieve energy 
efficiency. To make this possible, it is necessary 
to consider a series of variables that influence 
energy consumption and user comfort, such as 
building orientation, envelope thermal quality, 
the relationship between opaque and translucent 
surfaces, and building shape.

Nowadays, professionals frequently resort to 
computational modeling and simulation (BPS or 
Building Performance Simulation) to evaluate and 
analyze different design and operation strategies. 
This is because the effectiveness of BPS has been 
documented in the literature and has been used in a 
wide range of applications (Azar et al., 2021; Raj et 
al., 2021; Schwartz & Raslan, 2013).

Both modeling and computational simulation are 
done before the construction or remodeling of 
a building, considering the variables mentioned 
above and the outdoor climatic conditions. 
The results obtained through this process are 
sufficient and accurate throughout a period and 
at the same frequency. These results can be the 
building’s energy consumption, maximum loads, 
and indoor environmental conditions, among 
others (Seyedzadeh et al., 2019). However, this 
methodology usually requires many tests and 

lengthy periods (Papadopoulos et al., 2018) and 
demands a high level of expertise with powerful 
computing resources (Catalina et al., 2013). To 
overcome these limitations, researchers have begun 
to apply surrogate models that complement the 
capabilities of BPS. The process consists of training 
a mathematical model that mimics its performance 
and testing different building configurations at a low 
computational cost (Ye et al., 2019; Fang & Cho, 
2019).

Substitute models allow users to predict the energy 
behavior of a building under different conditions. 
Some of the works that have used mathematical 
models to predict energy consumption include, 
for example, the use of neural network models or 
multiple linear regression models (Chou & Ngo, 
2016; González-Vidal et al., 2017; Huang et al., 
2021; Jiwon et al., 2022; Kwak et al., 2013; Zhao 
& Magoulès 2012). However, these are difficult for 
construction professionals to solve and access.

In this regard, this work aims to contribute to 
theoretical knowledge about energy assessment 
tools where it is unnecessary to resort to compelling 
but complex simulation environments. For this 
reason, the formulation of a simplified mathematical 
model based on simple morphological variables is 
proposed to predictively calculate the annual energy 
requirement for a building’s air conditioning (REC). 
The argument is that simplifying mathematical 
models for initial energy assessments in buildings 
is currently subject to stationary thermal-energy 
balances, implying a gap between dynamic realities 
and the answers the BPS can provide. Due to this, 
the model sought aims to capture the variability 
of the thermal-energy-dynamic balance using the 
EnergyPlus program, given that the Dataset is 
built with the parametric simulations this makes. 
This simplified approach can offer construction 
professionals a practical and accessible tool for 
making energy-efficiency decisions. 

Finally, it should be noted that the context where this 
model will be applied will be in buildings located 
in a temperate continental climate environment, 
specifically in the Mendoza region, Argentina.

METHODOLOGY
The study’s work method is applied and divided into 
three sequential stages: the first is the parametric 
simulation, the second is creating the Dataset, and 
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Discrete variable

Shape typology

C - square R - rectangular L - corner shape

Continuous variables

v- WWR Factor
(opaque openings and wall ratio)

20 - 30 - 40 - 50 – 60 – 70 – 80 – 90 - 100

w- orientation 0 – 15 – 30 – 45 – 60 – 75 – 90 – 105 – 120 – 135 – 150 – 165
– 180 – 195 – 210 -225 – 240 – 255 – 270 – 285 – 300 – 315

– 330 – 345 – 360

x-Wall - EPS insulation thickness 
(expanded polystyrene)

0.01 – 0.02 – 0.03 – 0.04 – 0.05 - 0.06 - 0.07 – 0.08 – 0.09 –
0.10 – 0.11 - 0.12 – 0.13 – 0.14 – 0.15 - 0.16 - 0.17 – 0.18 –

0.19 – 0.20

y-Roof - EPS insulation thickness 0.01 – 0.02 – 0.03 – 0.04 – 0.05 - 0.06 - 0.07 – 0.08 – 0.09 –
0.10 – 0.11 - 0.12 – 0.13 – 0.14 – 0.15 - 0.16 - 0.17 – 0.18 –

0.19 – 0.20

Table 1. Variables considered for the study. Source: Preparation by the authors.

the third covers constructing the mathematical 
models. 

Each of these consists of sub-stages, which are 
detailed below. The first parametric simulation stage 
is based on identifying the entry variables and their 
ranges to be used as inputs in the simulation model; 
the second is performing the parametric simulations 
for the climate of the city of Mendoza, establishing 
the data of air-conditioning energy requirements as 
an output. 

On the other hand, the sub-stages in the Dataset 
creation are from processing the data obtained in the 
simulations with the training data. Finally, once this 
stage is completed, the third mathematical model 
creation stage begins, namely their elaboration 
process. Each of the stages and sub-stages is 
explained in detail below. 

PARAMETRIC SIMULATION

Nowadays, computer simulations have strict 
validation in the studies and analysis of light, 

thermal, and energy behaviors, among others, for 
building projects or already built buildings (Malkawi, 
2004). Therefore, the simulation data are considered 
realistic of the REC values of the building forms used. 
The parametric simulation methodology allows the 
systematic combination of all the variables in the 
same simulation procedure, as it simplifies the actions 
of the simulator user to execute and program the 
interaction of the variables one by one in individual 
simulations.

VARIABLES AND RANGES

INPUTS, Input data of the simulation models

The following variables were used as study variables: 
the shape, the orientation, the opaque-transparent 
envelope ratio, and the transmittance values of walls 
and roofs. Table 1 presents the categorized variables, 
the ranges used, and their subsequent denomination 
in the mathematical models.

Variables are divided into discrete and continuous. 
As discrete variables, the building typologies of 
houses are determined considering their shape: 
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CASE NAME REC VALUE 
[Kw]

EP_G_Pv_0_Pw_0_Px_0_Py_0 x1

EP_G_ Pv_0_Pw_0_Px_0_Py_1 x2

EP_G_ Pv_0_Pw_0_Px_0_Py_2 x3

EP_G_ Pv_0_Pw_0_Px_0_Py_nx xN

EP_G_ Pv_1_Pw_3_Px_7_Py_0 x5

EP_G_ Pv_1_Pw_3_Px_7_Py_1 x6

EP_G_ Pv_1_Pw_3_Px_7_Py_2 x7

EP_G_ Pv_ nx _Pw_ nx _Px_ nx _Py_ nx xN

Table 2. Dataset outline built from parametric simulations. Source: 
Preparation by the authors based on the results.

square, rectangular, and L, exemplifying different 
compactness indices (CI), 88.6%, 82.6%, and 75.5%, 
respectively.

PARAMETRIC COMPUTATIONAL SIMULATIONS

In this phase, the EnergyPlus 9.2 and Jeplus programs 
were used to make parametric simulations. The 
parametric methodology is an exhaustive method 
that allows evaluating the cross-combination and 
interrelation of numerous values of ranges entered 
as inputs, changing one at a time. This results in a 
total of 270,000 simulations.

The three formal building typologies were modeled. 
With these models, the parametric simulations were 
made by modifying the input variables of Table 1. 
The models worked with a single thermal zone of 
80m2. In the materialization, the traditional and mass 
construction system of the City of Mendoza was taken 
as a reference, using for walls: mass ceramic brick, 
plaster on both sides, and thermal insulation; and for 
roofs: lightened concrete slabs, mortar for slopes, 
asphalt membrane, and thermal insulation. The 
variability of the construction packages was worked 
on by modifying the thermal insulation thicknesses, 
using EPS (expanded polystyrene) in both cases.

As an output, the Zone Ideal Loads Heating Energy 
and Zone Ideal Loads Cooling Energy outputs of 
the EnergyPlus program were used, which provide 
the heating and cooling energy requirement values. 
These values are added together to obtain the annual 
air conditioning total. Using this, thermostats related 
to the Olgyay comfort ranges were established, i.e., 
for winter, it was set at 20°C, and for summer, 24°C. 
The ideal load RECs were used, so specific HVAC 
systems were not considered.

CONSTRUCTION OF THE DATASET

To set up the Dataset, the results of the simulations 
of the previous stage were used, whose data were 
used to train the mathematical models. Unlike what 
is done with artificial neural network methodologies, 
in this study, to optimize the models and lower error 
values, the sample was not divided into a training 
group and a testing group, as obtaining more data 
would lead to an increase in the training sample.

The Dataset consists of two columns. The first has 
the case code name that represents the change of 
the value of each variable to combine the differences 
one at a time among all of them. The second column 
has the REC value obtained by the simulation. The 
outline built is presented in Table 2.

Where:
EP: EnergyPlus;
G: Climate file;
Pv: WRR Variable;
Pw: Orientation variable;
Px: WALL insulation thickness variable; 
Py: ROOF insulation thickness variable;
Nx: number of times q changes the value of the range 
of each variable until the combination of all of them is 
completed, in this case, the 270,000 cases;
x1-x2-xN: REC values obtained from the simulations 
for each case.

CONSTRUCTION OF MATHEMATICAL MODELS

Development of mathematical models

Once the Dataset outline stage is over, the third 
mathematical model development stage begins. 
For this, the information synthesized in the Dataset 
was input into the SageMath software, whose role 
is to build mathematical models. In the process, 
a balance was sought between obtaining a fine 
model and the statistical model that approached 
the reference value, which was taken from the 
results obtained from the simulations (REC). In this 
way, each mathematical model was developed 
as an equation where the independent variables 
are the continuous variables (v: WWR factor, w: 
orientation, x: Wall-EPS insulation thickness, y: 
Roof-EPS insulation thickness). The least squares 
fit sets the parameters of the equations using 
computational simulations. Once the parameters 
have been determined in the equation, it can be 
used to predict the building’s REC by replacing the 
continuous variables with the value of the building 
in question.
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Table 3. Types of models tested and fit measures for each.  Source: Preparation by the authors

MODELS ERROR MEASUREMENTS

Square shape Rectangular shape L-shape

Min. Max. STD Min. Max. STD Min. Max. STD

L -0.123 0.127 0.047 -0.213 0.296 0.099 -0.26 0.224 0.083

Lin -0.89 0.097 0.033 -0.121 0.219 0.06 -0.199 0.153 0.062

CC/C 0.05 0.064 0.018 -0.094 0.126 0.042 -0.078 0.116 0.033

Cs/C -0.081 0.116 0.035 -0.154 0.177 0.053 -0.183 0.211 0.063

CIn c/C -0.044 0.037 0.009 -0.063 0.067 0.022 -0.046 0.061 0.016

CIn s/C -0.081 0.107 0.032 -0.136 0.154 0.042 -0.17 0.196 0.059

CIn c/R -0.07 0.056 0.018 -0.086 0.093 0.032 -0.071 0.071 0.023

CIn c/r2 -0.067 0.058 0.018 -0.077 0.095 0.031 -0.074 0.063 0.023

F2t -0.038 0.031 0.013 -0.101 0.168 0.058 -0.05 0.076 0.022

F3t -0.03 0.23 0.011 -0.048 0.044 0.018 -0.029 0.053 0.011

F3t/S -0.036 0.028 0.012 -0.069 0.062 0.032 -0.039 0.061 0.015

F4t -0.026 0.02 0.006 -0.052 0.015 0.007 -0.028 0.047 0.008

(Equation 1)

A total of 40 mathematical models were made, trying 
not to make them unnecessarily complicated. An 
exploration of options was carried out that began with 
linear models, which yielded high errors of around 
29.6%. For reference, the more parameters a model 
has, the fewer errors it should have. However, this can 
be risky if “overfitting” is produced. To avoid this, 
models with errors that did not decrease substantially 
by increasing the number of parameters were 
preferred. Consequently, the improvements were 
made with quadratic models. In addition, orientation 
was highlighted as an angular variable, which led to 
the need to upgrade to trigonometric models.

 
RESULTS
Different results obtained from the models that 
allowed an approximation to a simple generic 
equation were explored. These were analyzed in two 
senses: one, the equation, its form and development 
in terms of quantity and representativeness of the 
parameters involved, and the other, from the error as 
a diagnostic object of the predictive value and the 
effectiveness of the model.

Evaluating the relative minimum and maximum errors 
was considered a goodness-of-fit measure. The tested 
models and the error measurements compared to 
each shape are presented in Table 3. The standard 
deviation value is also presented as a goodness-of-fit 
measure.

CC/C Quadratic with cross-terms
Cs/C Quadratic without cross-terms
L Linear
CInc/C Inverse quadratic with cross-terms
CIns/C Inverse quadratic without cross-terms
Lin Inverse linear
F4t Fourier 4 terms → looks like overfitting
F3t Fourier 3 terms
F3t/S Fourier 3 symmetric terms
F2t Fourier 2 terms
CIn c/R Inverse quadratic with clipping
CIn c/R2 Inverse quadratic with clipping V2

The models were divided by family, linked to the assumed 
hypotheses. Of the 40 models explored, three stand out 
due to the following reasons: 

a. The errors in the predictions obtained are limited; 
b. The number of parameters does not lead to overfitting 

and 
c. They allow for analyzing energy consumption 

behavior regarding the included variables.

The three models that were considered optimal are 
presented below:

Model 1 [M1] (model 01, Linear Fourier 2 even terms) 
(Equation 1)
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Where:

Model 1 C L R

A 10633.1 2190.61 5093.01

B -128.62 -250.7 -442.29

Av -17.49 -4.49 -5.33

Bv -14.67 -6.56 -12.09

Ax 14.76 10.7 12.97

Bx 1.79 1.49 2.34

Ay 2.09 4.97 3.9

By 5.94 1.96 3.75

Table 4. Values of the estimates for the parameters of Model 1. Source: 
Preparation by the authors.

 (Equation 2)

(Equation 3)

(Equation 4)

Model 2 C L R

F 11226.94 2459.96 5834.87

Fw -128.62 -250.7 -442.29

Fv -35.09 -14.09 -29.29

Fx 5.28 8.44 6.76

Fy -6.28 4.61 2.91

Fww 40.69 -8.89 -148.99

Fvv 0.11 0.06 0.17

Fxx -0.02 -0.03 -0.05

Fyy 0.01 -0.03 -0.04

Fwv -14.67 -6.56 -12.09

Fwx 1.79 1.49 2.34

Fwy 5.94 1.96 3.75

Fvx 0.16 0.07 0.17

Fvy 0.09 0.04 0.06

Fxy 0.12 0.07 0.05

Table 5. Values of the estimates of the parameters of the Model 2. 
Source: Preparation by the authors.

Model 3 C L R

A 11247.28 2455.51 5760.38

B -197.85 -105.05 -16.54

Av -35.09 -14.09 -29.29

Bv -13.03 -13.39 -29.96

Ax 5.28 8.44 6.76

Bx 2.33 2.29 2.32

Ay -6.28 4.61 2.91

By 8.97 3.49 5.35

Avv 0.11 0.06 0.17

 Bvv -0.03 0.05 0.14

Axx -0.02 -0.03 -0.05

Bxx -0.02 -0.01 -0.01

Ayy 0.01 -0.03 -0.04

Byy -0.07 -0.02 -0.04

Avx 0.16 0.07 0.17

Bvx 0.03 0.01 0.03

Avy 0.09 0.04 0.06

Bvy 0.07 0.02 0.04

Axy 0.12 0.07 0.05

Bxy -0.01 -0.01 -0.01

Table 6. Values of the estimates of Model 3’s parameters
Source: Preparation by the authors.

This model has 8 parameters (A, B, Av, BV, Ax, Bx, 
Ay, and By). The values estimated for each shape are 
presented in Table 4.

Model 2 [M2] (quadratic angular model 30 even terms) 
(Equation 2)

This model uses 15 parameters. The fit values thereof are 
presented in Table 5.

Model 3 [M3] (model 15, Quadratic Fourier, 2 even 
terms) (Equation 3)              

Where (Equation 4):

 The values of the parameters are presented in Table 6. In 
this case, a total of 20 is used.
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S-Shape Absolute errors Relative errors

Min Max Std Min Max Std

M1 -1693 726 183 -0.14 0.07 0.02

M2 -801 897 125 -0.06 0.08 0.01

M3 -521 899 118 -0.05 0.08 0.01

R-Shape Absolute errors Relative errors

Min Max Std Min Max Std

M1 -1304 735 189 -0.19 0.17 0.04

M2 -551 1038 110 -0.08 0.14 0.02

M3 -597 980 104 -0.09 0.18 0.02

L-Shape Absolute errors Relative errors

Min Max Std Min Max Std

M1 -875 352 103 -0.21 0.17 0.05

M2 -362 564 72 -0.16 0.14 0.04

M3 -347 538 67 -0.14 0.14 0.03

Table 7. Min, Max, and Std absolute and relative error measurements 
for the square shape. Source: Preparation by the authors.

Table 8. Min, Max, and Std absolute and relative error measurements 
for the rectangle shape. Source: Preparation by the authors.

Table 10. First variables assumed for a housing project, Case n. Source: 
Preparation by the authors.

Table 9. Min, Max, and Std absolute and relative error measurements 
for the corner shape. Source: Preparation by the authors.

(Equation 5)  

(Equation 6)  

(Equation 7)  

(Equation 8)  

(Equation 9)  

Original 
Square

Original 
Rectangle

Original L

Original Original Original

Mathematical model 11034 5638 2855

Computational 
simulation

10646.97 5067.73 2656.52

Relative error 4% 11% 8%

Table 11. Results of the air conditioning energy requirement [KW/m2] 
and relative error. Source: Preparation by the authors.

The predictive value of each model, the absolute 
minimum and maximum errors, relative errors, and the 
standard deviation (Std) between the mathematical 
model and the prediction of the simulations are 
presented in Table 7 for the S-shape and Tables 8 and 
Table 9 for L and R.

These analyses show that, in the S-Shape with the 
M2, the REC value calculated by the model may have 
a relative error of 1.2%. The minimum and maximum 
error values are the percentage of error that can occur 
when the model’s equation gives a lower (Min error) 
or a higher consumption (Max error) compared to the 
reference. Following the example of M2, the error can 
vary by 6%, giving a lower value of REC, and by 8%, 
giving a higher value of REC.

USE OF THE MODEL IN A DESIGN EXAMPLE

For the following example, a housing project with the 
characteristics presented in Table 12 was assumed.

The REC is obtained with the variables of Table 10 and 
using Model 1 (considering it as optimal). For this, the 
first step is to obtain the values of F (Equation 5), Fv 
(Equation 6), Fx (Equation 7), and Fy (Equation 8) for 
w=0:

Shape Square Rectangular L

v -WWR 40% 40% 40%

w - 
orientation

0 (North) 0 (North) 0 (North)

x – wall 
insulation 
thickness

0.01 
(considering 

a wall without 
insulation)

0.01 
(considering 

a wall without 
insulation)

0.01 
(considering 

a wall without 
insulation)

y – roof 
insulation 
thickness

0.05 0.05 0.05

With these values, this is replaced in the model’s equation 
(Equation 9):

The values obtained with the mathematical models are 
compared with the results of the simulations’ Dataset to 
evaluate the margin of error. These values are presented 
in Table 11, where it is observed that the errors are 
within the thresholds presented in Table 7, Table 8, and 
Table 9, where the Max for the square shape is 7% and 
17% for the rectangular and L shapes.



HS

58

Construcción de modelos matemáticos simples para el cálculo del requerimiento energético de edificaciones
María Victoria Mercado, Gustavo Javier Barea-Paci, Andrés Esteban Aceña
Revista Hábitat Sustentable Vol. 13, N°. 2. ISSN 0719 - 0700 / Págs. 50 -61
https://doi.org/10.22320/07190700.2023.13.02.04

Table 12. Variables corrected to improve the Case n project. Source: Preparation by the authors.

Table 13. Results of the air conditioning energy requirement [KW/m2] and energy saving percentage. Source: Preparation by the authors.

The values allow considering changes and 
improvements in the project, such as increasing 
insulation in walls and ceilings, leading to the values 
of x=0.1 and y=0.1, and reducing the proportion of 
openings to 20% in the S shape and 30% in the R and 
L shapes. (Table 12).

When calculating with the mathematical model, 
improvements in reducing the energy requirement 
are observed. These results are presented in Table 
13.

Energy reduction and savings are differentiated 
between building shapes. Up to 37% improvement 
is achieved in the L shape, 20% for the rectangular 
shape, and less than 7% for the square shape. This 
allows differentiating improvement and bioclimatic 
design strategies for the building’s different geometric 
configurations. In addition, it reveals the importance 
and potential of the mathematical models.

DISCUSSION
Mathematical modeling is advantageous for 
predicting the REC. Although using 20 parameters 
may seem excessive, this contrasts with the time, 
resources, and expertise needed to perform the 
270,000 simulations that fed the model.

In the error analysis, the restricted relative error 
below 2.1% is considered acceptable. Regarding the 
number of parameters, a substantial improvement 
is obtained by moving from M1 (8 parameters) to 

M2 (15 parameters). However, when moving from 
M2 to M3 (20 parameters), the same relevance is 
not observed in the model’s improvement, so it can 
be noted that considering models with more than 
20 parameters does not have predictive advantages 
and runs the risk of overfitting.

As for the models not presented, it is important 
to emphasize that choosing the model’s functional 
shape strongly affects predictive ability. That is, 
instead of considering 1/x and 1/y as variables, x 
and y will be taken into account directly, and the 
errors grow substantially. The same occurs for 
the angular dependence in w. A “goodness of 
fit” measurement is also made for all models on 
the calculated values, using the chi-square over 
degrees of freedom (x2/d.o.f.) methodology. This 
allows evaluating whether the errors are randomly 
distributed compared to the prediction, in terms 
that, if the model fits well, the value of x2/dof should 
be the closest to 1. 

Table 14 shows models that deviate considerably 
from the reference measurement (1) and others 
that are reasonable, although they are not perfect. 
However, since the Dataset is very numerous and 
the parameters are few, one can opt for the path 
of making more models with a greater number 
of parameters and, in this way, ameliorate the x2/
dof. The problem is that the models become more 
complex, losing their simplicity.

The improvement observed in moving from model 
1 to model 2 shows that switching to non-linear 

Shape Square Rectangular L

v -WWR 20% 30% 30%

w - orientation 0 (North) 0 (North) 0 (North)

x - wall insulation thickness 0.05 0.05 0.1

y - roof insulation thickness 0.1 0.1 0.1

Square Rectangular L

Original Improved Original Improved Original Improved

Mathematical model 
result

11034 10273 5638 4510 2855 1800

REC Reduction 7% 20% 37 %
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Table 14. Chi-square over degrees of freedom values. Source: Preparation by the authors.

Model No of 
Parameters

Shape

C L R

01 Linear Fourier 2 even terms [M1] 8 3.4 5 7.4

02 Linear Fourier 2 odd terms 8 51.6 93.5 130.4

03 Linear Fourier 3 terms 12 3.2 5 7.2

04 Linear Fourier 3 even terms 12 3.3. 4.5 6.3

05 Linear Fourier 3 odd terms 12 51.6 93.3 130.4

06 Linear Fourier 4 terms 16 3.2 4.8 6.1

07 Linear Fourier 5 terms 20 3.2 4.3 6.1

08 Fourier Quad STC 2 even terms 14 2.8 3.4 6.1

09 Fourier Quad STC 2 odd terms 14 51.1 92.6 128,5

10 Fourier Quad STC 3 terms 21 2.7 3.4 3.9

11 Fourier Quad STC 3 even terms 21 2.7 3.4 3.9

12 Fourier Quad STC 3 odd terms 21 51 92.4 128.4

13 Fourier Quad STC 4 terms 28 2.6 3.1 2.7

14 Fourier Cuad STC 5 terms 35 2.6 2.7 2.7

15 Fourier Quad 2 even terms [M3] 20 1.4 2.2. 2.1

16 Fourier Quad 2 odd terms 20 1.4 2.2 2.1

17 Fourier Quad 3 terms 30 1.3 2.1 1.9

18 Fourier Quad 3 even terms 30 1.3 1.7 0.9

19 Fourier Quad 3 odd terms 30 49.8 91.4 126.9

20 Fourier Quad 4 terms 40 1.2 1.8 0.7

21 Fourier Quad 5 terms 50 1.2 1.4 0.7

22 Fourier Linear Extra 2 even terms 12 3.3 4.8 7.2

23 Fourier Linear Extra 2 odd terms 12 51.6 93.4 130.3

24 Fourier QuadExtra V1 2 even terms 20 1.4 2.4 2.9

25 Fourier QuadExtra V1 2 even terms 20 49.8 91.7 127.5

26 Fourier Quad lExtra V2 2 even terms 20 1.4 2.4 2.2

27 Fourier Quad Linear Extra V2 2 odd 
terms

20 49.9 91.8 127

28 Angular Quad STC even 9 11.2 11.5 15.5

29 Angular Quad STC odd 9 51 92.7 129.1

30 Angular Quad even [M2] 15 1.6 2.5 2.4

31 Angular Quad odd 15 49.8 91.7 127.4

35 Linear 5 56.8 58.4 135.6

36 Quadratic STC 9 16 49.4 24.2

37 Quadratic 15 14.5 44.5 22.2

38 Inverse linear 5 51.5 45.9 129.1

39 Inverse quadratic STC 9 13.9 45.1 21.5

40 Inverse quadratic 15 12.6 40.2 18.9
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Model 2 C L R

F 11227 2460 5835

Fw -257 -501 -885

Fv -3509 -1409 -2929

Fx 528 844 676

Fy -628 461 291

Fww 41 -9 -149

Fvv 1099 631 1660

Fxx -215 -350 -474

Fyy 89 -328 -358

Fwv -2934 -1312 -2418

Fwx 357 298 468

Fwy 1188 391 750

Fvx 1560 740 1653

Fvy 887 389 596

Fxy 1217 662 477

Table 15. Values of the estimates of Model 2’s parameters. Source: 
Preparation by the authors.

models is the right decision. However, it is necessary 
to emphasize that achieving reasonable predictions 
with the consequently less complex linear models 
is feasible. The use of non-linear models allows 
conclusions to be reached regarding the importance 
of the different variables, not only by themselves 
but also in synergy with the others. M2 is chosen 
to discuss this point. This seems to be the most 
successful model of the search carried out in this 
work.

The standardized M2 parameters, similar to those 
presented in Table 5, are presented in Table 15, 
considering the range of the associated variable. 
That is to say, the change that this variable produces 
in consumption when it passes from one end of 
its range to the other makes it possible to see the 
importance of each term in the REC clearly. 

The first thing observed is that a high degree of 
consumption is given by parameter F, namely the 
constant in the model that does not depend on any 
of the variables. It is also important that the lowest 
constant is obtained for the L-shape, which highlights 
that architectural design substantially impacts energy 
consumption. On this consumption basis, the angular 
dependence given by Fw and Fww is not substantial.

Remembering what happens with Fv, whose role 
contributes to the glazed surface proportion, is 
also necessary. This term is always important and, 
moreover, negative, indicating that an increase in 
the glazed surface leads to reduced consumption. 
However, it is noted that Fvv (glazed surface), 
in the quadratic term, leads to an increase in 
consumption, although considerably less than the 
savings if the term were linear.

Finally, analyzing individual variables shows that 
the roof and wall insulation thickness have a lower 
impact than other variables. This means that there 
is a minor impact on consumption. The most 
important crossover term is Fwv, which, moreover, 
is negative. The rest of the terms are of intermediate 
importance, which shows that, although there are 
factors to highlight, an oversimplification of the 
model and design considerations is detrimental.

CONCLUSIONS
This research addresses the study of representative 
equations to obtain the housing’s REC value. 
When making constructive decisions, the energy 
requirement is one of several factors to consider. 
Within this analysis, having a predictive model 
such as this one simplifies decision-making, 
allowing decisions to be made on quantitative 
considerations.

Forty mathematical models were run based on the 
results of parametric simulations, with non-linear 
models considered more suitable for balancing 
complexity for non-specialist users with low error 
levels.

The models considered optimal showed that it is 
possible to approach a reference value simply. The 
case used to demonstrate this serves to verify the 
values using the simulations, considering these 
as plausible. The results show that these models 
correctly fit a first analysis and are the basis for 
accurate energy-efficient decisions in the first 
steps of the architectural project.

This work can be replicated in other regions of the 
country by changing the climate archive. The work 
comprises a diversity of total transmittance values 
of different walls and roofs, orientations, and 
WWR ratios. For future work, it is felt that it is both 
necessary and possible to reduce the data used 
as a Dataset by using sampling and categorization 
methodologies such as LHS (Latin Hyper Cube).
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