Heuristica de dos-etapas para el problema de corte de piezas con guillotinado bidimensional
Palabras clave:
Corte y empaquetado, búsqueda tabú, recocido simulado.Resumen
En un ambiente altamente competitivo, el problema de corte de guillotina bidimensional es un elemento clave en la reducción de costos. Este problema tiene una amplia gama de aplicaciones en industrias cuyos procesos de corte de materiales se realizan con máquinas que sólo permiten cortes de un extremo a otro. En este trabajo se presenta un algoritmo de dos etapas usando metaheurísticas para acomodar en una sola placa de ancho conocido y longitud infinita, un conjunto de ítems rectangulares fuertemente heterogéneos que pueden ser rotados 90°. El objetivo es minimizar la longitud requerida de la placa procurando la acumulación del desperdicio. En la primera etapa se aplica un algoritmo de búsqueda tabú para determinar el orden en que se acomodan los ítems. En la segunda, se busca determinar el mejor acomodo de los ítems en la placa mediante un algoritmo de recocido simulado. Se experimenta con un conjunto de instancias conocidas. Los resultados muestran que la rotación de piezas favorece la obtención de soluciones que igualan al menos las reportadas previamente en la literatura y que la concentración de los desperdicios incrementa su posibilidad de reutilización.
Into a highly competitive environment, two-dimensional guillotine’s cut problem is an elementary key to cost reduction. This problem has a wide variety of applications into factories related to processes material cut. Cuts are done by machines which cut from one edge to other. A two stage algorithm is shown to place a finite set of items in a single plate with a known width and infinite length, using metaheuristics. All items are rectangular, mostly are distinct itself and each one can only be rotated 90 degrees at once. Main objective is minimization of length required by plate and waste accumulation were compacted as much as possible. First stage determines the order from items placed by using a tabu search algorithm. Second stage tries improving the order previous, through a simulated annealing algorithm. Experiments were performed over a set instance already known. Results showed solutions at least, equal or better than solutions known, due to rotation. Also, certain amount of waste grouped was achieved, which means a possible material recycling.
Descargas
Citas
ÁLVAREZ, M. D. Solución del problema de empaquetamiento óptimo bidimensional en una sola placa, en placas y rollos infinitos con o sin rotación de piezas usando técnicas metaheurísticas de optimización. Tesis de Maestría. Pereira, Colombia. Universidad Tecnológica de Pereira. 2010.
ARYANEZHAD, M.B.; HASHEMI, N.H.; MAKUI, A.; and JAVANSHIR, H.A Simple approach to the two-dimensional guillotine cutting stock problem. Journal of Industrial Engineering International, 2012, vol. 8, no. 21. p. 2-10.
BAESEMAN, C.; MILLER, S.; and HESS, M. A. Free Pascal Lazarus, versión 9.26.1999. [consultado 01/06/2010]. [en linea] http://sourceforge.net/projects/lazarus/.
CLAUTIAUX, F.; JOUGLET, A.; and MOUKRIM, A. A new graph-theoretical model for k-dimensional guillotine-cutting problem. Experimental Algorithms, Lecture Notes in Computer Science, 2008.p. 43-54, DOI: 10.1007/978-3-540-68552-4_4.
DICKHOFF, H. A typology of cutting and packing problems. European Journal of Operational Research, 1990, vol. 44. p. 145–159.
DOWSLAND, K.A.; and DOWSLAND, W.B. Packing Problems. European Journal of Operational Research, 1992, vol. 56, no. 1. p. 2–14.
EL-BOURI, A.; RAO, J.; POPPLEWELL, N.; and BALAKRISHNAN, S. An improved heuristic for the two-dimensional cutting stock problem with multiple sized stock sheets. International Journal of Industrial Engineering, 2006, vol. 13, no. 2. p. 198-206.
GILMORE, P.; and GOMORY, R. A linear programming approach to the cutting stock problem. Operation Research, 1961, vol. 9. p. 849-859.
GLOVER, F. Tabu Search –Part 1. Journal of computing, 1989, vol. 1, no. 3. p. 190-206.HIFI, M. Exact Algorithms for the Guillotine Strip Cutting/Packing Problem. Computers & Operations Research, 1998, vol. 25, no. 11. p. 925-940.
HIFI, M. Strip-cutting, OR-Benchmark. s.f. [consultado 20/12/2009]. [en linea] ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/Strip-cutting/.
HIFI, M.; M’HALLAH, R.; and SAADI, T. Aproximate and exact algorithms for the double-constrained two-dimensional guillotine cutting stock problem. Computational Optimization and Applications, 2009, vol. 42, no. 2. p. 303-326. DOI 10.1007/s10589-007-9081-5.
HIFI, M.; and SAADI, T. A parallel algorithm for two-staged two-dimensional fixed-orientation cutting problems.Computational Optimization and Application,2010. DOI 10.1007/s10589-010-9351-5.
KIRKPATRICK, S.; GELATT, C.D.; and VECCHI, M.P. Optimization by simulated annealing. Science, New Series, 1983, vol. 220, no. 4598. p. 671-680.
LODI, A.; MARTELLO, S.; and VIGO, D. Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems. INFORMS Journal on Computing, 1999, vol. 11. p. 345-357.
MORABITO, R.; and PUREZA, V. A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem. Annals of Operations Research, vol. 179, 2010.p. 297-315. DOI 10.1007/s10479-008-0457-4.
PARK, K.T.; RYU, J.H.; LEE, H.K.; and LEE, I.B. Developing a heuristics for glass cutting process optimization: A case of two-dimensional two-stage guillotine cutting with multiple stock sizes. Korean Journal of Chemistry Engineering, 2013, vol. 30, no. 2. p. 278-285.
SWEENEY, P.; and PATERNOSTER, R. Cutting and packing problems: A categorized, application-orientated research bibliography. Journal of the Operational Research Society, 1992, vol. 43, no. 7. p. 691-706.
TERASHIMA-MARÍN, H.; FARÍAS-ZÁRATE, C. J.; ROSS, P.; and VALENZUELA-RENDÓN, M. Comparing Two Models to Generate Hyper-heuristics for the 2D-Regular Bin-Packing Problem. Proceedings of the Genetic and Evolutionary Computation Conference, GECCO (London, UK, 2007).p. 2182-2189.
TORO, E.M.; RUEDA, A.C.; and RUÍZ, H.A. Effect of the initial configuration in the solution of the two-dimensional cut problem using the taboo search algorithm. Revista Colombiana de Tecnologías de Avanzada, 2008, vol. 1, no. 11.p. 107-113.
TORO, E. M.; and GRANADA, M. Two dimensional guillotine cutting packing problem using genetic algorithm. Scientia et Technical, 2007. año XIII, vol. 35. p. 321-326.
WÄSCHER, G.; HAUSSNER, H.; and SCHUMANN, H. An improved typology of cutting and packing problems. European Journal of Operational Research, 2007, vol. 183. p. 1109-1130.DOI:10.1016/j.ejor.2005. 12.047.
WHITWELL, G. Novel heuristic and metaheuristic approaches to cutting and packing. Thesis for Phd degree. United Kingdom. University of Nottingham.2004.
YANASSE, H.; and MORABITO, R. A note on linear models for two-group and three-group two-dimensional guillotine cutting problems. International Journal of Production Research,2008, vol. 46, no. 21.p. 6189-6206.
YAODONG, C.; XINFANG, Z.; YING, Y.; and PENG, Y. Uniform block patterns for constrained guillotine cutting of rectangular items. International Journal of Information Management Sciences, 2009. p. 89-101.
Descargas
Publicado
Número
Sección
Licencia
Revista Ingeniería Industrial by Revista Ingeniería Industrial is licensed under a Creative Commons Reconocimiento 4.0 Internacional License. Creado a partir de la obra en revistas.ubiobio.cl/index.php/RI/. Puede hallar permisos más allá de los concedidos con esta licencia en http://revistas.ubiobio.cl/index.php/RI/about/