Matriz de referencia para la optimización del ciclo de vida de los materiales constructivos de la vivienda social en zonas árido-sísmicas

  • Analia Alejandra Alvarez Instituto de Estudios en Arquitectura Ambiental (INEAA); Facultad de Arquitectura, Urbanismo y Diseño (FAUD); Universidad Nacional de San Juan (UNSJ) https://orcid.org/0000-0003-0069-8173
  • Veronica Ripoll-Meyer Instituto de Estudios en Arquitectura Ambiental (INEAA), Facultad de Arquitectura, Urbanismo y Diseño, Universidad Nacional de San Juan
Palabras clave: Ciclo de Vida, Materiales Constructivos, Vivienda Social, Zonas Árido-Sísmico

Resumen

El objetivo de esta investigación es contribuir con la sustentabilidad ambiental en el árido a través del desarrollo de un sistema de apoyo a la toma de decisiones en las distintas fases que intervienen en el ciclo de vida (ACV) de los edificios. Para ello, se analizan los materiales característicos de los sistemas constructivos racionalizados propios de zonas árido-sísmicas en relación con las emisiones de dióxido de carbono asociadas a los mismos durante su producción, uso y disposición final. Los resultados alcanzados permiten determinar el nivel de sustentabilidad de los materiales analizados de acuerdo con su importancia relativa en la cadena de valor de la construcción de un país emergente como Argentina. Con base en ello, puede realizarse la estimación temprana del comportamiento energético de la vivienda social, así como la optimización de dichos materiales conforme a una mirada integral de la problemática habitacional en términos de ciclo de vida. Por tanto, la herramienta desarrollada permite empoderar a los usuarios de dichas viviendas, para que puedan ejercer su derecho a una vivienda digna y a un ambiente sano, equilibrado y apto para el desarrollo humano, tal como lo establecen los artículos 14bis y 41 de la Constitución Nacional Argentina.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Analia Alejandra Alvarez, Instituto de Estudios en Arquitectura Ambiental (INEAA); Facultad de Arquitectura, Urbanismo y Diseño (FAUD); Universidad Nacional de San Juan (UNSJ)

Doctora Arquitecta

Veronica Ripoll-Meyer, Instituto de Estudios en Arquitectura Ambiental (INEAA), Facultad de Arquitectura, Urbanismo y Diseño, Universidad Nacional de San Juan

Arquitecta

Citas

ALI, Ahmed; NEGM, Adbelazim; BADY, Mahmoud e IBRAHIM, Mona. Environmental life cycle assessment of a residential building in Egypt: A case study, Procedia Technology [en línea], 2015, vol. 19, pp. 349-356. [Consultado 8 de agosto 2018]. Disponible en: https://core.ac.uk/download/pdf/82527681.pdf

ANTÓN VALLEJO, Asunción. Utilización del Análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Tesis Doctoral. Universitat Politècnica de Catalunya (UPC) (España), 2004.

BASBAGILL, John; FLAGER, Forest; LEPECH, Michel y FISCHER, Martin. Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts, Building and Environment, 2013, vol. 60, pp. 81-92.

CARABAÑO, Rocío; BEDOYA, César y RUIZ, Diego. La metodología del análisis de ciclo de vida para la evaluación del impacto ambiental en el sector de la construcción: Estado del arte [en línea]. En: I Congreso Internacional sobre investigación en Construcción y Tecnología Arquitectónicas. Universidad Politécnica de Madrid. ETSAM. [Consultado 8 de octubre de 2018]. Disponible en: https://www.researchgate.net/publication/263357247_La_metodologia_del_analisis_de_ciclo_ de_vida_para_la_evaluacion_del_impacto_ambiental_en_el_ sector_de_la_construccion_Estado_del_arte. 2014.

CARABAÑO, Rocío; HERNANDO, Susana; RUIZ, Diego y BEDOYA, César. Análisis de Ciclo de Vida (ACV) de los materiales de construcción para la evaluación de la sostenibilidad en la edificación: el caso de los materiales de aislamiento térmico, Revista de la Construcción [en línea], 2017, vol. 16, n° 1, pp. 22- 32. DOI: http://dx.doi.org/10.7764/RDLC.16.1.22.

CARPINETTI Bruno y ESPONDA, Alejandra. Introducción al desarrollo sustentable. 2a ed. Buenos Aires: Universidad Nacional Arturo Jauretche, 2013.

CELEMÍN, Juan Pablo. El proceso analítico jerárquico en el marco de la evaluación multicriterio: un análisis comparativo, Geografía y Sistemas de Información Geográfica (GEOSIG), 2014, año 6, n° 6, pp. 47-63.

CHACÓN, Mercedes Andrea y D’AMELIO, Aldana Florencia. Estudio comparativo del impacto ambiental de una vivienda convencional y de una vivienda sustentable en la etapa de la construcción. Avances y estado de situación en análisis de ciclo de vida y huellas ambientales en argentina. En: Actas del IV Encuentro Argentino de Ciclo de Vida y III Encuentro de la Red Argentina de Huella Hídrica – ENARCIV, 2015, pp. 73-75.

CORONA BELLOSTAS, Blanca. Análisis de Sostenibilidad del Ciclo de Vida de una Configuración innovadora de Tecnología Termosolar [en línea]. Tesis Doctoral. Universidad Politécnica de Madrid. Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales. [Consultado 8 de agosto 2018]. Disponible en: http://oa.upm.es/43813/1/ BLANCA_CARMEN_CORONA_BELLOSTAS.pdf. 2016.

DELGADO CASTILLO, Carlos y VELÁZQUEZ FLORES, Gerardo. Materiales de Construcción Sustentables en México: Políticas Públicas y Desempeño Ambiental. En: X Seminario Itinerante del Campo Estratégico de Acción en Pobreza y Exclusión del Sistema Universitario Jesuita. México: Universidad Iberoamericana, 2012, pp. 1-53.

GARRIDO PIÑERO, Julia. Metodología de Evaluación y Minimización del Impacto Medioambiantal de tipologías residenciales de vivienda colectiva en la ciudad de Sevilla. Tesis Doctoral. Departamento de Construcciones arquitectónicas. Escuela Técnica Superior de Arquitectura. Universidad de Sevilla, 2015.

HURTADO TOSKANO, Bruno. El proceso de Análisis Jerárquico (AHP) como herramienta para la toma de decisiones en la Selección de Proveedores [en línea]. Tesis Digitales UNMSM. [Consultado 8 de agosto 2018]. Disponible en: http://sisbib.unmsm.edu.pe/bibvirtual/ monografias/basic/toskano_hg/contenido.htm. 2005.

IPCC. Fifth Assessment Report. Global Warming Potential Values [en línea], 2014. [Consultado 8 de agosto 2018]. Disponible en: http:// www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming- Potential-Values%20%28Feb%2016%202016%29_1.pdf.

IRAM 11601. Aislamiento térmico de edificios. Métodos de cálculo. Propiedades térmicas de los componentes y elementos de construcción en régimen estacionario. UNSJ. Biblioteca de la Facultad de Ingeniería. Instituto de Mecánica Aplicada. Norma. Argentina, 2002.

IRAM 11603. Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina. UNSJ. Biblioteca de la Facultad de Ingeniería. Instituto de Mecánica Aplicada. Norma. Argentina, 2012.

IRAM 11604. Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en calefacción. Coeficiente volumétrico G de pérdidas de calor. Cálculo y valores límites. UNSJ. Biblioteca de la Facultad de Ingeniería. Instituto de Mecánica Aplicada. Norma. Argentina, 2001.

IRAM 11605. Acondicionamiento térmico de edificios. Condiciones de habitabilidad en edificios. Valores máximos de transmitancia térmica en cerramientos opacos. UNSJ. Biblioteca de la Facultad de Ingeniería. Instituto de Mecánica Aplicada. Norma. Argentina, 1996.

IRAM 11659-1. Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en refrigeración. Parte 1: Vocabulario, definiciones, tablas y datos para determinar la carga térmica de refrigeración. UNSJ. Biblioteca de la Facultad de Ingeniería. Instituto de Mecánica Aplicada. Norma. Argentina, 2004.

IRAM 11659-2. Acondicionamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en refrigeración. Parte 2: Edificios para viviendas. UNSJ. Biblioteca de la Facultad de Ingeniería. Instituto de Mecánica Aplicada. Norma. Argentina, 2007.

IRAM 21931-1/12. Construcción sostenible. Marco de referencia para los métodos de evaluación del desempeño ambiental de las obras de construcción. Parte 1- Edificios. UNSJ. Biblioteca de la Facultad de Ingeniería. Instituto de Mecánica Aplicada. Norma. Argentina, 2012.

LÓPEZ-MESA, Belinda; PALOMERO CÁMARA, José; ORTEGA ZAPATA, Agustín y DEL AMO SANCHO, Alejandro. La rehabilitación y la mejora de la eficiencia energética de la vivienda social a examen, Monografías de la Revista Aragonesa de Administración Pública, 2013, vol. XV, pp. 283-319.

MARRERO, Madelyn; MARTÍNEZ-ESCOBAR, Luna; MERCADER, Pilar y LEIVA, Carlos. Minimización del impacto ambiental en la ejecución de fachadas mediante el empleo de materiales reciclados, Informes de la Construcción [en línea], 2013, vol. 65, n° 529, pp. 89-97. DOI: 10.3989/ic.11.034.

MUÑOZ SANGUINETTI, Claudia y QUIROZ ORTIZ, Francisco. Análisis de Ciclo de Vida en la determinación de la energía contenida y la huella de carbono en el proceso de fabricación del hormigón premezclado. Caso estudio planta productora Región del Bío-Bío, Chile, Revista Hábitat Sustentable, 2014, vol. 4, n° 2, pp. 16-25.

QUISPE GAMBOA, Claudia N. Análisis de la Energía Incorporada y Emisiones de CO2 aplicado a viviendas unifamiliares de eficiencia energética [en línea]. Tesis de Maestría. Universidad Politécnica de Cataluña Escuela Técnica Superior de Arquitectura de Barcelona Máster en Arquitectura, Energía y Medio Ambiente, 2016. [Consultado 8 de agosto 2018]. Disponible en: https:// wwwaie.webs.upc.edu/maema/wp-content/uploads/2016/10/ Quispe-Gamboa-Claudia-Nataly.pdf

QUISPE LOYOLA, César. Aplicación del proceso analítico jerárquico (AHP) en la selección de un marco de referencia para gestionar los proyectos de una empresa consultora. Tesina. Universidad Nacional Mayor de San Marcos Facultad de Ciencias Matemáticas E.A.P. de Investigación Operativa. Lima, Perú, 2017.

ROS GARCÍA, Juan y SANGLIER CONTRERAS, Gastón. Análisis del Ciclo de Vida de una Unidad Prototipo de Vivienda de Emergencia. La búsqueda del impacto nulo. Informes de la Construcción [en línea], 2017, vol. 69, n° 547, p. e211. DOI: http://dx.doi.org/10.3989/ic.16.035. 2017.

RÖCK, Martin; HOLLBERG, Alexander; HABERT, Guillaume y PASSER, Alexander. LCA and BIM: Integrated assessment and visualization of building elements’ embodied impacts for design guidance in early stages. En: 25th CIRP Life Cycle Engineering (LCE) Conference, 2018, Copenhagen, Denmark Procedia CIRP 69 [en línea], 2018, pp. 218-223. [Consultado 8 de agosto 2018]. Disponible en: https://ac.els-cdn.com/S2212827117308636/1-s2.0- S2212827117308636-main.pdf?_tid=61036bbc-08a3-4bc0-902a
Publicado
2018-12-31
Cómo citar
Alvarez, A., & Ripoll-Meyer, V. (2018). Matriz de referencia para la optimización del ciclo de vida de los materiales constructivos de la vivienda social en zonas árido-sísmicas. Hábitat Sustentable, 8(2), 52-63. https://doi.org/10.22320/07190700.2018.08.02.04
Sección
Artículos

Agencias de apoyo

Esta investigación se engloba en el proyecto titulado “Optimización del Ciclo de Vida de los Materiales Constructivos de zonas árido-sísmicas” 1° Etapa, Convocatoria 2016-2017, Res. N°86/16-CD-FAUD y 2° Etapa, Convocatoria 2017-2018, Res. N°058/17-CD-FAUD. Al respecto, se agradece al Instituto de Estudios en Arquitectura Ambiental (INEAA) por ser la institución en que se realizó la investigación y a la Facultad de Arquitectura, Urbanismo y Diseño (FAUD) de la Universidad Nacional de San Juan (UNSJ) por financiar la misma.