Mejoras en el desempeño energético de edificios en verano mediante la integración de envolventes ventiladas en fachadas norte y cubiertas. El caso de Mendoza, Argentina.
DOI:
https://doi.org/10.22320/07190700.2020.10.02.07Palabras clave:
envolvente ventilada, rehabilitación edilicia, eficiencia energética, consumos para refrigeraciónResumen
La propuesta de medidas de eficiencia energética en el sector residencial de Argentina requiere el análisis de las posibilidades arquitectónicas de rehabilitación edilicia con tecnologías que disminuyan los consumos energéticos, factibles de implementarse a nivel local. En regiones con alto nivel de radiación solar, como es el caso de la ciudad de Mendoza, pueden reducirse los flujos de calor transmitidos al interior mediante la ventilación natural de las capas en la envolvente -tanto en fachadas como en cubiertas-, obteniéndose así importantes ahorros en los consumos para refrigeración. El presente trabajo evalúa el potencial de mejora con la integración de envolventes ventiladas. La metodología del trabajo se estructura en dos etapas: i) relevamiento de edificios residenciales, según la tipología morfológica, y análisis de las posibilidades de rehabilitación con fachada ventilada, de acuerdo a las superficies de envolvente expuesta por orientación; ii) simulación de un caso de estudio -previamente validado con mediciones in situ- con el software EnergyPlus. Al integrar fachadas y cubiertas ventiladas se lograron importantes ahorros energéticos del orden del 32%, considerando al edificio sin usuarios (desocupado). Para el caso de las unidades del último piso, con cubiertas expuestas al exterior se registraron ahorros energéticos del 260%.
Descargas
Citas
Albayyaa, H., Hagare, D. y Saha, S. (2019). Energy conservation in residential buildings by incorporating Passive Solar and Energy Efficiency Design Strategies and higher thermal mass. Energy and Buildings, 182(1), 205-213. DOI: https://doi.org/10.1016/j.enbuild.2018.09.036
Aparicio-Fernández, C., Vivancos, J.L., Ferrer-Gisbert, P. y Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering, 66(1-2), 563-570. DOI: https://doi.org/10.1016/j.applthermaleng.2014.02.041
Ascionea, F., Biancoa, N., De Masib, R. y Vanolib, G. (2013). Rehabilitation of the building envelope of hospitals: Achievable energy savings and microclimatic control on varying the HVAC systems in Mediterranean climates. Energy and Buildings, 60, 125–138. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.01.021
Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings, 34(5), 469-475. DOI: https://doi.org/10.1016/S0378-7788(01)00130-X
Balocco, C. (2004). A non-dimensional analysis of a ventilated double façade energy performance. Energy and Buildings, 36(1), 35-40. DOI: https://doi.org/10.1016/S0378-7788(03)00086-0
Balter, J., Alchapar, N., Correa, E., Ganem, C. (2018). Validación de modelo microclimático calculado con ENVI-met como herramienta para el análisis térmico edilicio de EnegyPlus. En V Congreso Latinoamericano de Simulación de Edificios. IBPSA (International Building Performance Simulation Association). Valparaíso, Chile.
Balter, J., Ganem, C., Discoli, C. (2016). On high-rise residential buildings in an oasis-city: thermal and energy assessment of different envelope materiality above and below tree canopy. Energy and Buildings, 113(1), 61-73. DOI: https://doi.org/10.1016/j.enbuild.2015.11.011
Balter, J., Pardal, C., Paricio, I., Ganem, C (2019). Air cavity performance in Opaque Ventilated Facades in accordance with the Span Technical Building Code. ACE: Architecture, City and Environment, Arquitectura, Ciudad y Entorno, 13(39), 211-232. DOI: 10.5821/ace.13.39.6487
Bórmida, E. (1984). Mendoza, una ciudad Oasis. Mendoza: Universidad de Mendoza.
Cabeza, L. y De Gracia. A. (2021). Thermal energy storage systems for cooling in residential buildings. En Cabeza, L. (Ed.), Advances in Thermal Energy Storage Systems. Methods and Applications (pp. 595-623). Woodhead Publishing. Universidad de Lleida, Lleida, España.
Cantón, A., Mesa, A., Cortegoso J.L. y De Rosa, C. (2003). Assesssing the solar resource in forested urban environments. Architectural Science Review, 46(2), 115-123.
Damico, F. C., Alvarado, R. G., Bruscato, U., Trebilcock-Kelly, M., Oyola, O. E. y Díaz, M. (2012). Análisis energético de las viviendas del centro-sur de Chile. Arquitectura Revista, 8(1), 62-75.
Domínguez Delgado, A., Durand Neyra, P. y Domínguez Torres, C.A. (2013). Estudio del enfriamiento pasivo por fachadas ventiladas en el sur de España. En Actas del I Congreso Internacional de Construcción Sostenible y Soluciones Eco-eficientes (20, 21 y 22 de mayo 2013, Sevilla, España) (pp. 193-205). Sevilla: Universidad de Sevilla.
Elarga, H., De Carli, M. y Zarrella, A. (2015). A simplified mathematical model for transient simulation of thermal performance and energy assessment for active facades. Energy and Buildings 104(1), 97-107. DOI: https://doi.org/10.1016/j.enbuild.2015.07.007
Fantucci, S., Marinosci, C., Serra, V. y Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia, 111, 619-628. DOI: https://doi.org/10.1016/j.egypro.2017.03.224
Fernández, A., Garzón, B. y Elsinger, D. (2020). Incidencia de las estrategias pasivas de diseño arquitectónico en la etiqueta de eficiencia energética en Argentina. Hábitat Sustentable, 10(1), 56-67. DOI: https://doi.org/10.22320/07190700.2020.10.01.05
Filippín C., Ricard F., Flores Larsen, S. y Santamouris, M. (2017). Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change. Renewable Energy, 101, 1226-1241. DOI: https://doi.org/10.1016/j.renene.2016.09.064
Gagliano, A., Patania F., Nocera, F., Ferlito, A. y Galesi, A. (2012). Thermal performance of ventilated roofs during summer period. Energy and Buildings, 49, 611–618. DOI: https://doi.org/10.1016/j.enbuild.2012.03.007
Gagliano, A., Nocera, F. y Aneli, S. (2016). Thermodynamic analysis of ventilated façades under different wind conditions in summer period, Energy and Buildings, 122(15), 131-139. DOI: https://doi.org/10.1016/j.enbuild.2016.04.035
Gregorio Atem, C. (2016). Fachadas ventiladas: hacia un diseño eficiente en Brasil. Tesis doctoral. Universidad Politécnica de Cataluña.
Haddad, S., Barker, A., Yang, J., Mohan Kumar, D., Garshasbi, S., Paolini, R. y Santamouris, M. (2020). On the potential of building adaptation measures to counterbalance the impact of climatic change in the tropics. Energy and Buildings, 229(15), DOI: https://doi.org/10.1016/j.enbuild.2020.110494
Ibáñez-Puy, M., Vidaurre-Arbizu, M., Sacristán-Fernández, J. y Martín-Gómez, C. (2017). Opaque Ventilated Façades: Thermal and energy performance review. Renewable and Sustainable Energy Reviews, 79, 180–191. DOI: https://doi.org/10.1016/j.rser.2017.05.059
IRAM 11601 - Instituto argentino de Normalización y Certificación (2002). Aislamiento térmico de edificios. Métodos de cálculo. Buenos Aires: IRAM.
IRAM 11900 - Instituto argentino de Normalización y Certificación (2017). Prestaciones Energéticas en Viviendas, Método de cálculo. Buenos Aires: IRAM.
Köppen W. y Geiger R. (1936). Das geographische system der klimate, Handbuch der klimatologie. Berlín: Verlag von Gebrüder Borntraeger.
Leccese F., Salvadori, G., Asdrubali, F y Gori, P. (2018). Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls. Applied Energy, 225(1), 1078-1089. DOI: https://doi.org/10.1016/j.apenergy.2018.05.090
Li, D., Zheng, Y., Liu, C., Qi, H. y Liu, X. (2016). Numerical analysis on thermal performance of naturally ventilated roofs with different influencing parameters. Sustainable Cities and Society, 22, 86–93. DOI: http://dx.doi.org/10.1016/j.scs.2016.02.004
Manfredi, V. y Masi, A. (2018). Seismic Strengthening and Energy Efficiency: Towards an Integrated Approach for the Rehabilitation of Existing RC Buildings. Buildings, 8(36), 2-19. DOI: https://doi.org/10.3390/buildings8030036
Patania, F., Gagliano, A., Nocera, F., Ferlito, A. y Galesi, A. (2010). Thermofluid-dynamic analysis of ventilated facades. Energy and Buildings, 42(7), 1148-1155. DOI: https://doi.org/10.1016/j.enbuild.2010.02.006
Peci López F., Jensen, R.L., Heiselberg, P. y Ruiz de Adana Santiago, M. (2012). Experimental analysis and model validation of an opaque ventilated façade. Building and Environment, 56, 265-275. DOI: https://doi.org/10.1016/j.buildenv.2012.03.017
Peci López, F. y Ruiz Adana Santiago, M. (2015). Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain. Renewable Energy, 75, 524-533. DOI: https://doi.org/10.1016/j.renene.2014.10.031
Pérez Fargallo, A., Calama Rodríguez, J.M. y Flores Alés, V. (2016). Comparativa de resultados de rehabilitación energética para viviendas en función del grado de mejora. Informes de la Construcción, 68, 1-11. DOI: http://dx.doi.org/10.3989/ic.15.048
Raimundo, A., Saraiva, N. y Oliveira V. (2020). Thermal insulation cost optimality of opaque constructive solutions of buildings under Portuguese temperate climate. Building and Environment, 182, 107-107. DOI: https://doi.org/10.1016/j.buildenv.2020.107107
Rubio-Bellido, C., Pulido-Arcas, J. A. y Ureta-Gragera, M. (2015). Aplicabilidad de estrategias genéricas de diseño pasivo en edificaciones bajo la influencia del cambio climático en Concepción y Santiago, Chile, Hábitat Sustentable, 5(2), 33-41.
San Juan, C., Suárez, M., J., González, M., Pistono, J. y Blanco, E. (2011). Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade. Solar Energy, 85(9), 1851-1863. DOI: https://doi.org/10.1016/j.solener.2011.04.028
Sánchez, M.N., Giacola, E., Suárez, M.J., Blanco, E. y Heras, M.R. (2017). Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV. Renewable Energy, 109, 613-623. DOI: https://doi.org/10.1016/j.renene.2017.03.082
Sandberg, M. y Moshfegh, B. (1996). Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements. Renewable Energy, 8(1-4), 248-253. DOI: https://doi.org/10.1016/0960-1481(96)88856-2
Stazi, F., Tomassoni, F., Veglio, A. y Di Perna, C. (2011). Experimental evaluation of ventilated walls with an external clay cladding. Renewable Energy, 36, 3373-3385. DOI: https://doi.org/10.1016/j.renene.2011.05.016
Suárez, C. y Molina, J.L. (2015). Análisis del efecto chimenea en fachadas ventiladas opacas mediante correlaciones del flujo másico inducido. Aplicación para el dimensionado de anchos de cámara. Informes de la Construcción, 67, 1-9.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Julieta Balter, Carolina Ganem, Gustavo Barea
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
El contenido de los artículos que se publican en cada número de Hábitat Sustentable, es responsabilidad exclusiva de los autores y no representan necesariamente el pensamiento ni comprometen la opinión de la Universidad del Bío-Bío.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC BY-SA que permite a otros compartir-copiar, transformar o crear nuevo material a partir de esta obra con fines no comerciales, siempre y cuando se reconozcan la autoría y la primera publicación en esta revista, y sus nuevas creaciones estén bajo una licencia con los mismos términos.