Contenido principal del artículo

Manuela Cabezas


El artículo examina el auge de la expresión Pensamiento Computacional (PC) en el campo educativo, desde la perspectiva de las transformaciones producidas por la computación en los últimos 20 años y su impacto en la educación. Prestando particular atención a dicho contexto, se cuestionan las iniciativas educativas para el PC como solución al problema educativo para la educación de hoy y se establecen lineamientos para el abordaje didáctico del PC desde los aportes de la didáctica de la programación. El objetivo es problematizar el enfoque didáctico del PC desde la perspectiva de la Educación Informática como base para el modelo didáctico de las ciencias computacionales.

DOI: https//

Detalles del artículo

Cómo citar
Cabezas, M. (2024). PENSAMIENTO COMPUTACIONAL, EDUCACIÓN STEM Y LA EDUCACIÓN INFORMÁTICA: CUESTIONES PENDIENTES. Revista Reflexión E Investigación Educacional, 45–58. Recuperado a partir de


Aikat, J., Carsey, T., Fecho, K., Jeffay, K., Krishnamurthy, A., Mucha, P., & Ahalt, S.C. (2017). Scientific training in the era of big data: A new pedagogy for graduate education. Big Data, 5(1), 12–18. DOI: 10.1089/big.2016.0014

Armoni, M. (2016). Computer science, computational thinking, programming, coding: The anomalies of transitivity in k–12 computer science education. ACM Inroads, 7(4), 24– 27. DOI: 10.1145/3011071

Atkin, J. M., & Black, P. (2005). Changing the subject: innovations in science, maths and techno- logy education. Routledge.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to k-12: what is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. DOI: 10.1145/1929887.1929905

Berry, G., Dowek, G., Abiteboul, S., Archambault, J., Balagué, C. Baron, G., & Viéille, T. (2013). L’enseignement de l’informatique en france, il est urgent de ne plus attendre. (Rapport de l’Académie des Sciences).

Bibri, S. (2021). The core academic and scientific disciplines underlying data-driven smart sustainable urbanism: an interdisciplinary and transdisciplinary framework. Computational Urban Science, 1(1), 1–32. DOI: 10.1007/s43762-021-00001-2

Blackley, S., & Howell, J. (2015). A stem narrative: 15 years in the making. Australian Journal of Teacher Education, 40(7), 102–112. DOI: 10.14221/ajte.2015v40n7.8

Camp, T., W.R., A., Bizot, B., Davidson, S., Hall, M., Hambrusch, S., & Zweben, S. (2017). Generation CS: the growth of computer science. ACM Inroads, 8(2), 44–50. DOI: 10.1145/3084362

Cansu, S.K., & Cansu, F.K. (2019). An overview of computational thinking. Journal of Computer Science Education in Schools, 3(1), 17–30. DOI: 10.21585/ijcses.v3i1.53

Castells, M. (2000). The rise of the network society. Blackwell: Oxford

CECE. (2017). The Committee on European Computing Education (CECE) y Association for Computing Machinery (ACM) Informatics Education in Europe: Are We All En The Same Boat? New York NY United States, DOI: 10.1145/3106077

Clauss, A.D., & Nelsen, S.F. (2019). Integrating computational molecular mode ling into the undergraduate organic chemistry curriculum. Journal of Chemical Education, 8(2), 44–50. DOI: 10.1021/ed086p955

Cone, L., Brøgger, K., Berghmans, M., Decuypere, M., Förschler, A., Grimaldi, E., & Vanermen, L. (2021). Pandemic acceleration: Covid-19 and the emergency digita lization of european education. European Educational Research Journal. DOI: 10.1177/14749041211041793

da Rosa, S. (2004). Designing algorithms in high school mathematics. In Lecture Notes in Computer Science vol. 3294. Springer-Verlag.

da Rosa, S. (2018). Piaget and computational thinking. CSERC’18: Proceedings of the 7th Computer Science Education Research Conference, 44–50. DOI: 10.1145/3289406.3289412

da Rosa, S., Viera, M., & García-Garland, J. (2020). A case of teaching practice founded on a theoretical model. Lecture Notes in Computer Science 12518 from proceedings of the International Conference on Informatics in School: Situation, Evaluation, Problems, 146–157. DOI: 10.1007/978-3-030-63212-0

Decuypere, M., Grimaldi, E., & Landri, P. (2021). Introduction: Critical studies of digital education platforms. Critical Studies in Education, 62(1), DOI: 10.1080/17508487.2020.1866050

Denning, P. (2017). Computational thinking in science. Sigma Xi, The Scientific Research Society, American Scientist, 105.

Denning, P., Comer, D., Gries, D., Mulder, M., Tucker, A., Turner, A., & Young, P. (1989). Computing as a discipline. Communications of the ACM, 32(1), 9–23.

Denning, P., & Tedre, M. (2015). Shifting identities in computing: From a useful tool to a new method and theory of science. En Hannes Werthner and Frank van Harmelen, Eds. Informatics in the Future, Proceedings of the 11th European Computer Science Summit.

Denning, P., & Tedre, M. (2016). The long quest for computational thinking. Proceedings of the 16th Koli Calling Conference on Computing Education Research, 120–129.

Denning, P., & Tedre, M. (2019). Computational thinking. Cambridge, MA: The MIT Press. Denning, P., y Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics in Education, 20(3), 361–390. DOI: 10.15388/infedu.2021.21

Dowek, G. (2005). Quelle informatique enseigner au lycée? Bulletin de l’APMEP, nr.480.

Gomes, A. (2007). Learning to program - difficulties and solutions. Proceedings of the International Conference on Engineering Education ICEE, 283–287.

Götschi, I.T., & Sanders Galpin, V. (2003). Mental models of recursion. Proceedings of the 34th SIGCSE technical symposium on Computer Science Education, 346–350.

Hazra, R., Singh, M., Goyal, P., Adhikari, B., & Mukherjee, A. (2019). The rise and rise of inter- disciplinary research: Understanding the interaction dynamics of three major fields– physics, mathematics and computer science.

Henderson, M., & Romeo, G. (2015). Teaching and digital technologies: Big issues and critical questions. Cambridge University Press.

Holmboe, C., McIver, L., & Carlisle, E. (2001). Research agenda for computer science education. En G. Kadoda (Ed). Proceedings of XIII Psychology of Programming Interest Group, 207–223.

Hubwieser, P., Armoni, M., Giannakos, M., & Mittermeir, R. (2014). Perspectives and visions of computer science education in primary and secondary (k-12) schools. ACM Transactions on Computing Education (TOCE), Special Issue on Computing Education in (K-12) Schools., 14(7).

Informatics for all: Educating people for the digital age. (2018). -for-All- position-paper.pdf

Komljenovic, J. (2021). The rise of education rentiers: digital platforms, digital data and rents. Learning, Media and Technology 46(3), 1–13.

Kong, S., & Abelson, H. (2019). Computational thinking education. Springer Nature, p. 382. Koschmann, T. (1996). Cscl: Theory and practice of an emerging paradigm. Lawrence Erlbaum.

Lister, R. (2011). Concrete and other neo-piagetian forms of reasoning in the novice programmer. Proceedings of ACE 2011: The 13th Australasian Computing Education Conference., 114, 9–18.

Lodi, M., & Martini, S. (2021). Computational thinking, between Papert and Wing. Science & Education volume, 30, 883—908. DOI: 10.1007/s11191-021-00202-5

Mannila, M., Peltomäki, L., & Salakoski, T. (2007). What about a simple language? analyzing the difficulties in learning to program. Proceedings of the International Conference on Engineering Education ICEE, 211–227.

Markowetz, F. (2017). All biology is computational biology. pbio.2002050

Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcour.

Mittal, S., Durak, U., & Ören, T. (2017). Guide to simulation-based disciplines: Advancing our computational future.

Nicholls, A. (1983). Managing educational innovations. DOI: 10.4324/ 9781351040860

Nwana, H. (1997). The computer science education crisis: fact or illusion? Interacting with Computers, 9(1), 27–45. DOI: 10.1016/S0953-5438(97)00005-2

Palm, T. (2008). Impact of authenticity on sense making in word problem solving. (Vol.67). DOI: 10.1007/s10649-007-9083-3

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Pasterk, S., & Bollin, A. (2017). Digital literacy or computer science: ¿Where do information technology related primary education models focus on? DOI: 10.1109/ICETA.2017.8102517

Paulson, L. (2017). Computational thinking is not necessarily computational. Communications of the ACM, 60.

Pears, A., Tedre, M., Valtonen, T., & Vartiainen, H. (2021a). What makes computational thinking so troublesome? What Makes Computational Thinking so Troublesome. License CC BY 4.0. DOI: 10.13140/RG.2.2.20480.35842

Pears, A., Tedre, M., Valtonen, T., & Vartiainen, H. (2021b). What makes computational thinking so troublesome? DOI: 10.13140/RG.2.2.20480.35842

Pollock, L., Mouza, C., Guidry, K. R., & Pusecker, K. (2019). Infusing computational thinking across disciplines: Reflections and lessons learned. En Proceedings of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE’19), Association for Computing Machinery, CB-252, 435–441. DOI: 10.1145/ 3287324.3287469

Roach, E., Tilley, K., & Mitchell, J. (2018). How authentic does authentic learning have to be? Higher Education Pedagogies, 3(1), 495–509. DOI: 10.1080/23752696.2018.1462099

Roberts-Mahoney, A., Means, H., & Garrison, M. (2016). Netflixing human capital development: Personalized learning technology and the corporatization of k-12 education. Journal of Education Policy 31(4), 405–420.

Roth, W.M., Van Eijck, M., Reis, G., & Hsu, P.L. (2019). Authentic science revisited: En praise of diversity, heterogeneity, hybridity. Brill, Leiden.

Saeli, M., Perrenet, J., Jochems, W., & Zwaneveld, B. (2011). Teaching programming in secondary school: A pedagogical content knowledge perspective. Informatics in Education, 10(1), 73–88.

Salanci, L. (2015). Didactics of Programming. ICTE Journal, 4(3), 32-39.

Sancho-Gil, J., Rivera-Vargas, P., & Miño-Puigcercós, R. (2020). Moving beyond the predictable failure of ed-tech initiatives. Learning, Media and Technology 45(1), 61– 75.

Sanders, M. (2009). Stem, stem education, stemmania.

Schwill, A. (1997). Computer science education based on fundamental ideas. Proceedings of the IFIP TC3 WG3.1/3.5 joint working conference on Information technology: supporting change through teacher education, 285–291.

Selwyn, N. (2013). Distrusting educational technology: Critical questions for changing times. DOI: 10.4324/9781315886350

Serdyukov, P. (2017). Innovation in education: what works, what doesn’t, ¿and what to do about it? Journal of Research in Innovative Teaching and Learning 10(1), 4–33.

Sharma, A. (2017). A model scientific computing course for freshman students at liberal arts colleges. Journal of Computational Science Education, 2–9.

Sharma, A., & Asirwatham, L. (2019). Learning by computing: A first year honors chemistry curriculum.

Tedre, M. (2020). From a black art to a school subject: Computing education’s search for status. ITiCSE ’20: Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education, 3–4.

UNESCO, (2020). Education: From disruption to recovery.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 127–147.

Williams, P. (2011). Stem education: Proceed with caution. Design And Technology Education: An International Journal, 16(1), 61–75.

Williamson, B. (2017). Learning in the ‘platform society’: Disassembling an educational data assemblage. Research in Education 98(1), 59–82.

Wilson, C., Sudol, L., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to teach k12 computer science in the digital age. Association for Computing Machinery, ISBN 9781450388672.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3).

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical transitions of the Royal Society, 366, 3717–3725.

Wing, J. (2010). Computational thinking–what and why? The Link.