Impulsando comunidades energéticas en Colombia: retos y oportunidades para una transición energética descentralizada

Autores/as

DOI:

https://doi.org/10.22320/07190700.2025.15.01.01

Palabras clave:

energía eléctrica, política energética, Recursos Energéticos

Resumen

Las comunidades energéticas representan un paradigma transformador para democratizar el acceso a energías renovables, descentralizar los sistemas energéticos y fomentar la sostenibilidad económica. Este estudio analiza su desarrollo global, con énfasis en países en vías de desarrollo como Colombia. La investigación utiliza una revisión sistemática en Scopus y un análisis de co-ocurrencia de palabras clave para identificar tendencias; además, se revisaron documentos regulatorios colombianos para contextualizar los hallazgos. Se abordan la generación distribuida, el comercio entre pares (P2P) y los marcos regulatorios que impulsan transiciones energéticas locales. En Colombia, aunque las oportunidades son significativas, persisten retos de infraestructura, regulación y aceptación social, especialmente en el Caribe. Este artículo propone estrategias adaptadas basadas en experiencias internacionales para superar dichas barreras y consolidar sistemas descentralizados que aceleren la transición energética y el desarrollo sostenible del país.

Descargas

Biografía del autor/a

María Fernanda Medina-Reyes, Universidad Tecnológica de Bolívar, Cartagena de Indias, Colombia

Magíster en Seguridad de las TIC
Docente de planta de la Escuela de Transformación Digital

Juan Gabriel Fajardo-Cuadro, Universidad Tecnológica de Bolívar, Cartagena de Indias, Colombia

Doctor en Ciencias Técnicas
Docente de planta de la Escuela de Ingeniería y Arquitectura

Juan Carlos Martinez-Santos, Universidad Tecnológica de Bolívar, Cartagena de Indias, Colombia

Doctor en Computer Engineering
Docente de planta de la Escuela de Transformación Digital

Citas

ANDONI, M., ROBU, V., FLYNN, D., ABRAM, S., GEACH, D., JENKINS, D., MCCALLUM, P., & PEACOCK, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014 DOI: https://doi.org/10.1016/j.rser.2018.10.014

ARIZA, H., MARTÍNEZ-SANTOS, J. C., PAYARES, E. D., MEDINA, M. F., DOMINGUEZ-JIMÉNEZ, J. A., & CAMPILLO, J. (2020, October 13-16). A blockchain solution for operational parameters monitoring platform for DC microgrids [Paper presentation]. 2020 IEEE ANDESCON Conference, Quito, Ecuador, 1-6. https://doi.org/10.1109/ANDESCON50619.2020.9272035 DOI: https://doi.org/10.1109/ANDESCON50619.2020.9272035

CÁRDENAS-ÁLVAREZ, J. P., ESPAÑA, J. M., & ORTEGA, S. (2022). What is the value of peer-to-peer energy trading? A discrete choice experiment with residential electricity users in Colombia. Energy Research & Social Science, 91, 102737. https://doi.org/10.1016/j.erss.2022.102737 DOI: https://doi.org/10.1016/j.erss.2022.102737

CODINA, L. (2005). Scopus: el mayor navegador científico de la web. El Profesional de la Información, 14(1), 44-49. https://www.epn.edu.ec/wp-content/uploads/2017/03/Scopus-el-mayor-navegador.pdf DOI: https://doi.org/10.3145/epi.2005.feb.07

Comisión de Regulación de Energía y Gas – República de Colombia. (2011). El Mercado Eléctrico Colombiano. https://creg.gov.co/publicaciones/8206/como-funciona-el-mercado-electrico-de-colombia/

Departamento Nacional de Planeación – República de Colombia. (2023). Plan Nacional de Desarrollo 2022-2026. Potencia mundial de la vida. https://www.dnp.gov.co/plan-nacional-desarrollo/pnd-2022-2026

GJORGIEVSKI, V. Z., CUNDEVA, S., & GEORGHIOU, G. E. (2021). Social arrangements, technical designs and impacts of energy communities: A review. Renewable Energy, 169, 1138–1156. https://doi.org/10.1016/j.renene.2021.01.078 DOI: https://doi.org/10.1016/j.renene.2021.01.078

GONZÁLEZ-DUMAR, A., ARANGO-ARAMBURO, S., & CORREA-POSADA, C. M. (2024). Quantifying power system flexibility for the energy transition in Colombia. International Journal of Electrical Power and Energy Systems, 155, 109614. https://doi.org/10.1016/j.ijepes.2023.109614 DOI: https://doi.org/10.1016/j.ijepes.2023.109614

GU, B., MAO, C., WANG, D., LIU, B., FAN, H., FANG, R., & SANG, Z. (2023). A data-driven stochastic energy sharing optimization and implementation for community energy storage and PV prosumers. Sustainable Energy, Grids and Networks, 34, 101061. https://doi.org/10.1016/j.segan.2023.101051 DOI: https://doi.org/10.1016/j.segan.2023.101051

KUMARI, A., SUKHARAMWALA, U. C., TANWAR, S., RABOACA, M. S., ALQAHTANI, F., TOLBA, A., SHARMA, R., ASCHILEAN, I., & MIHALTAN, T. C. (2022). Blockchain-Based Peer-to-Peer Transactive Energy Management Scheme for Smart Grid System. Sensors, 22(13), 4826. https://doi.org/10.3390/s22134826 DOI: https://doi.org/10.3390/s22134826

MIGLANI, A., KUMAR, N., CHAMOLA, V., & ZEADALLY, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418. https://doi.org/10.1016/j.comcom.2020.01.014 DOI: https://doi.org/10.1016/j.comcom.2020.01.014

Ministerio de Minas y Energía – República de Colombia. (2023a). ABC de Comunidades Energéticas. https://www.minenergia.gov.co/documents/11069/ABC-ComunidadesEnergeticas-2023.pdf

Ministerio de Minas y Energía – República de Colombia. (2023b). Decreto 2236 de 2023. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=227230

Ministerio de Minas y Energía – República de Colombia. (2024). Comisión de Regulación de Energía y Gas, Proyecto de Resolución Nº.701 068 de 2024. https://gestornormativo.creg.gov.co/gestor/entorno/docs/originales/Proyecto_Resoluci%C3%B3n_CREG_701_068_2024/Proyecto_Resoluci%C3%B3n_CREG_701_068_2024.pdf

MOLINA, J. D., BUITRAGO, L. F., TÉLLEZ, S. M. G., GIRALDO, S. Y., & URIBE, J. A. (2022). Technological Architecture Design for Energy Communities: The Colombian Case. 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition – Latin America (IEEE PES GTD Latin America), La Paz, Bolivia, 1–6. https://doi.org/10.1109/IEEEPESGTDLatinAmeri53482.2022.10038297 DOI: https://doi.org/10.1109/IEEEPESGTDLatinAmeri53482.2022.10038297

MOLLAH, M. B., ZHAO, J., NIYATO, D., LAM, K. Y., ZHANG, X., GHIAS, A. M. Y. M., KOH, L. H., & YANG, L. (2021). Blockchain for Future Smart Grid: A Comprehensive Survey. IEEE Internet of Things Journal, 8(1), 18–43. https://doi.org/10.1109/JIOT.2020.2993601 DOI: https://doi.org/10.1109/JIOT.2020.2993601

MORSTYN, T., TEYTELBOYM, A., & MCCULLOCH, M. D. (2019). Designing decentralized markets for distribution system flexibility. IEEE Transactions on Power Systems, 34(3), 1–12. https://doi.org/10.1109/TPWRS.2018.2886244 DOI: https://doi.org/10.1109/TPWRS.2018.2886244

SIANO, P., DE MARCO, G., ROLAN, A., & LOIA, V. (2019). A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Systems Journal, 13(3), 3454–3466. https://doi.org/10.1109/JSYST.2019.2903172 DOI: https://doi.org/10.1109/JSYST.2019.2903172

SOTO, E. A., BOSMAN, L. B., WOLLEGA, E., & LEON-SALAS, W. D. (2021). Peer-to-peer energy trading: A review of the literature. Applied Energy, 283,116268. https://doi.org/10.1016/j.apenergy.2020.116268 DOI: https://doi.org/10.1016/j.apenergy.2020.116268

SOUSA, T., SOARES, T., PINSON, P., MORET, F., BAROCHE, T., & SORIN, E. (2019). Peer-to-peer and community-based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367–378. https://doi.org/10.1016/j.rser.2019.01.036 DOI: https://doi.org/10.1016/j.rser.2019.01.036

STEFAN, M., ZEHETBAUER, P., CEJKA, S., ZEILINGER, F., & TALJAN, G. (2020). Blockchain-based self-consumption optimisation and energy trading in renewable energy communities. CIRED 2020 Berlin Workshop, (1), 371–374. https://doi.org/10.1049/oap-cired.2021.0061 DOI: https://doi.org/10.1049/oap-cired.2021.0061

TKACHUK, R. V., ILIE, D., ROBERT, R., KEBANDE, V., & TUTSCHKU, K. (2023). Towards efficient privacy and trust in decentralized blockchain-based peer-to-peer renewable energy marketplace. Sustainable Energy, Grids and Networks, 35, 101146. https://doi.org/10.1016/j.segan.2023.101146 DOI: https://doi.org/10.1016/j.segan.2023.101146

WANG, S., TAHA, A. F., WANG, J., KVATERNIK, K., & HAHN, A. (2019). Energy Crowdsourcing and Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(8), 1612–1623. https://doi.org/10.1109/TSMC.2019.2916565 DOI: https://doi.org/10.1109/TSMC.2019.2916565

ZIA, M. F., BENBOUZID, M., ELBOUCHIKHI, E., MUYEEN, S. M., TECHATO, K., & GUERRERO, J. M. (2020). Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. IEEE Access, 8, 19410–19432. https://doi.org/10.1109/ACCESS.2020.2968402 DOI: https://doi.org/10.1109/ACCESS.2020.2968402

Publicado

2025-06-30

Cómo citar

Medina-Reyes, M. F., Fajardo-Cuadro, J. G., & Martinez-Santos, J. C. (2025). Impulsando comunidades energéticas en Colombia: retos y oportunidades para una transición energética descentralizada. Hábitat Sustentable, 15(1), 10–19. https://doi.org/10.22320/07190700.2025.15.01.01

Número

Sección

Artículos