Effect of torrefaction temperature on properties of Patula pine

  • Sergio Ramos-Carmona
  • Juan F. Pérez
  • Manuel Raúl Pelaez-Samaniego
  • Rolando Barrera
  • Manuel Garcia-Perez


The objective of this work was to study the effect of torrefaction temperature on properties of patula pine (Pinus patula) wood that could be of interest for further thermochemical processing. Torrefaction temperature was varied from 200 to 300 °C for 30 minutes using a batch spoon type reactor. Raw and torrefied materials were characterized for proximate and ultimate analyses, thermogravimetry, and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Results showed that torrefied pine has greater higher heating value and chemical exergy due to the reduction of O/C and H/C ratios. Compared with raw biomass, the material torrefied at 200 and 250 °C did not present significant changes  in chemical composition and thermal behavior. Conversely, material torrefied at 300 °C did show important changes in both chemical composition and thermal behavior. Py-GC/MS results suggested that the main constituents of biomass, i.e., hemicellulose, cellulose and lignin, suffer a progressive thermal degradation with increase in torrefaction temperature.


Pétrissans, A.; Younsi, R.M.; Chaouch, P.; Gérardin, M.P. 2014. Wood thermodegradation: experimental analysis and modeling of mass loss kinetics. Maderas-Cienc Tecnol 16:133-148.

Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169-175.

Bridgeman, T.G.; Jones, J.M.; Williams, A.; Waldron, D.J. 2010. An investigation of the grindability of two torrefied energy crops. Fuel 89:3911-3918.

Chen, W.H.; Cheng, W.Y.; Lu, K.M.; Huang, Y.P. 2011. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Appl Energy 88:3636-3644.

Chen, W.H.; Kuo, P.C. 2010. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35:2580-2586.

da Silva Grassmann, G.; Rogério-Andrade, C.; Dias-Júnior, A.F.; Gomes-da Silva, F.; Brito, J.O. 2016. Timber wastes torrefaction for energy use. Maderas-Cienc Tecnol 18(1):105-112.

Deng, J.; Wang, G.J.; Kuang, J.H.; Zhang, Y.L.; Luo, Y.H. 2009. Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrolysis 86:331-337.

FAOSAT. 2014. Global production of wood and wood derived products 2001-2012.

Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544:191-198.

García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. 2013. Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1-4.

Hill, S.J.; Grigsby, W.J.; Hall, P.W. 2013. Chemical and cellulose crystallite changes in Pinus radiata during torrefaction. Biomass and Bioenergy 56:92-98.

Ibrahim, R.H.H.; Darvell, L.I.; Jones, J.M.; Williams, A. 2013. Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis 103:21-30.

Iiyama, M.; Neufeldt, H.; Dobie, P.; Njenga, M.; Ndegwa, G.; Jamnadass, R. 2014. The potential of agroforestry in the provision of sustainable woodfuel in sub-Saharan Africa. Curr Opin Environ Sustain 6:138-147.

International Tropical Timber Organization. ITTO. 2012. ITTO annual report 2012.

Klinger, J.; Bar-Ziv, E.; Shonnard, D. 2015. Unified kinetic model for torrefaction-pyrolysis. Fuel Process Technol 138:175-183.

Kotas, T.J. 1995. The exergy method of thermal plant analysis. Krieger Publishing Company, Boston.
Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91:147-154.

Nocquet, T.; Dupont, C.; Commandre, J.M.; Grateau, M.; Thiery, S.; Salvador, S. 2014. Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1 - Experimental study. Energy 72:180-187.

Ospina, C.; Hernández, R.; Restrepo, E.; Sánchez, F.; Urrego, J.; Rondas, C.; Ramírez, C.; Riaño, N. 2011. El Pino pátula. Centro Nacional de Investigaciones de Café - CENICAFÉ. 105p. Manizales, Colombia. ISBN 978-958-8490-09-0.

Park, J.; Meng, J.; Lim, K.H.; Rojas, O.J.; Park, S. 2013. Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrolysis 100:199-206. Pelaez-Samaniego, M.R.; Yadama, V.; Garcia-Perez, M.; Lowell, E.; McDonald, A.G. 2014.

Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. J Anal Appl Pyrolysis 109:222-233.

Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. 2013. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci Technol 47:1285-1319.

Pérez, J.F.; Melgar, A.; Benjumea, P.N. 2012. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study. Fuel 96:487-496.

Pérez, J.F.; Osorio, L.F. 2014. Biomasa forestal como alternativa energética: Análisis silvicultural, técnico y financiero de proyectos. Universidad de Antioquia, Medellín.

Phalan, B. 2009. The social and environmental impacts of biofuels in Asia: An overview. Appl Energy 86:S21-S29.

Phanphanich, M.; Mani, S. 2011. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102:1246-1253.

Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. 2006a. Torrefaction of wood. Part 2. Analysis of products. J Anal Appl Pyrolysis 77:35-40.

Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. 2006b. Torrefaction of wood. Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77:28-34.

Quaak, P.; Knoef, H.; Stassen, H. 1999. Energy from biomass: A review of combustion and gasification technologies. World Bank Technical Paper N° 422.

Repellin, V.; Govin, A.; Rolland, M.; Guyonnet, R. 2010. Energy requirement for fine grinding of torrefied wood. Biomass and Bioenergy 34:923-930.

Schurr, S.H.; Netschert, B.C. 1960. Energy in the American Economy, 1850-1975: An economic study of its history ans prospects. Johns Hopkins Press.

Torres-Fuchslocher, C.; Varas-Concha, F. 2015. Design and efficiency of a small-scale woodchip furnace. Maderas-Cienc Tecnol 17:355-364.

Wang, Z.; Pecha, B.; Westerhof, R.J.M.; Kersten, S.R. A.; Li, C.Z.; McDonald, A.G.; Garcia- Perez, M. 2014. Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis. Ind Eng Chem Res 53:2940-2955.

Xue, G.; Kwapinska, M.; Kwapinski, W.; Czajka, K.M.; Kennedy, J.; Leahy, J.J. 2014. Impact of torrefaction on properties of Miscanthus × giganteus relevant to gasification. Fuel 121:189-197.

Yang, Z.; Sarkar, M.; Kumar, A.; Tumuluru, J.S.; Huhnke, R.L. 2014. Effects of torrefaction and densification on switchgrass pyrolysis products. Bioresour Technol 174:266-273.

Zhang, S.; Dong, Q.; Zhang, L.; Xiong, Y. 2016. Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Bioresour Technol 199:352-361.

Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; Wang, X.; He, F.; Li, H. 2015. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour Technol 176:15-22.
How to Cite
Ramos-Carmona, S., F. Pérez, J., Pelaez-Samaniego, M., Barrera, R., & Garcia-Perez, M. (1). Effect of torrefaction temperature on properties of Patula pine. Maderas. Ciencia Y Tecnología, 19(1), 39-50. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/2661