Valorization of Cistus ladanifer and Erica arborea shrubs for fuel: Wood and bark thermal characterization

Authors

  • Paula Carrión-Prieto
  • Pablo Martín-Ramos
  • Salvador Hernández-Navarro
  • Luis F. Sánchez-Sastre
  • José L. Marcos-Robles
  • Jesús Martín-Gil

Keywords:

Ash content, biomass resources, gum rockrose, heating values, tree heath

Abstract

As a form of upgraded biomass characterized by its high energy density, low production costs, and low process energy requirements, wood pellets are an environmentally friendly fuel allowing for carbon neutral heating with high energy efficiency. In this work, the suitability of a valorization of the woods from the two most representative shrub species from the Iberian Peninsula (namely Cistus ladanifer and Erica arborea) for heating has been assessed. Whereas Erica arborea met the requirements of ISO 17225-2:2014 for ENplus-B class (the calorific content for both wood and bark was high and not significantly different, and the ash content was permissible for specimens with branch diameter ≥2,8 cm), Cistus ladanifer was in the limit of the normative and only met the requirements in terms of acceptable ash percentage (1,9%) and heating value (19 kJ·g-1) for old specimens with branch diameters >3,4 cm. Consequently, while the harvest of E. arborea for its use as fuel does not need to be selective, that of C. ladanifer should be limited to the most robust specimens and foliage should be avoided.

  PDF XML

Downloads

Download data is not yet available.

References

Aseeva, R.M.; Thanh, B.D.; Serkov, B.B. 2005. Factors Affecting Heat Release at the Combustion of the Different Species of Wood. In Berlin, A.A.; Novakov, I.A.; Khalturinskiy, N.A.; Zaikov, G.E. eds. Chemical Physics of Pyrolysis, Combustion, and Oxidation. New York, USA. Nova Science Publishers pp. 45-53.

Barboutis, I.; Lykidis, C. 2014. The effects of bark on fuel characteristics of some evergreen Mediterranean hardwood species. In Proceedings of the 57th International Convention of Society of Wood Science and Technology, Zvolen, Slovakia. pp. 533-540.

Barmpoutis, P.; Lykidis, C.; Barboutis, I. 2015. Influence of stem diameter and bark ratio of evergreen hardwoods on the fuel characteristics of the produced pellets. Pro Ligno 11(4): 673-679.

Bombelli, A.; Avitabile, V.; Balzter, H.; Marchesini, L.B.; Bernoux, M.; Brady, M.; Hall, R.; Hansen, M.; Henry, M.; Herold, M.; Janetos, A.; Law, B.E.; Manlay, R.; Marklund, L.G.; Olsson, H.; Pandey, D.; Saket, M.; Schmullius, C.; Sessa, R.; Shimabukuro, Y.E.; Valentini, R.; Wulder, M. 2009. T12 Assessment of the status of the development of the standards for the Terrestrial Essential Climate Variables: Biomass. Rome, Italy: Global Terrestrial Observing System Secretariat, Land and Water Division (NRL), Food and Agriculture Organization of the United Nations (FAO). 30 pp. [Available at] <ftp://ftp.fao.org/docrep/fao/012/i1238e/i1238e00.pdf>.

Boubaker, A.; Kayouli, C.; Boukary, A.; Buldgen, A. 2004. Chemical and biological characterisation of some woody species browsed by goats in the North-West of Tunisia. In Ben Salem, H.; Morand-Fehr, P.; Nefzaoui, A. eds. Nutrition and feeding strategies of sheep and goats under harsh climates. Zaragoza, Spain. CIHEAM. pp. 147-151.

British Standards Institution. 2010. BS EN 14918:2009, Solid biofuels. Determination of calorific value. London, UK: British Standards Institution. 64 pp. [Available at] <http://shop.bsigroup.com/ProductDetail/?pid=000000000030198715>.

Carrión-Prieto, P.; Hernández-Navarro, S.; Martín-Ramos, P.; Sánchez-Sastre, L.F.; Garrido-Laurnaga, F.; Marcos-Robles, J.L.; Martín-Gil, J. 2017. Mediterranean shrublands as carbon sinks for climate change mitigation: new root-to-shoot ratios. Carbon Management 8(1): 1-11.

CHPQA. 2008. Guidance Note 29: Alternative fuels - Energy inputs. London, UK: UK Combined Heat & Power Quality Assurance Programme. 6 pp. [Available at] <https://www.chpqa.com/guidance_notes/GUIDANCE_NOTE_29.pdf>.

Dimitrakopoulos, A.P.; Panov, P.I. 2001. Pyric properties of some dominant Mediterranean vegetation species. International Journal of Wildland Fire 10(1): 23-27.

Doat, J.; Valette, J.C.; Askri, D.; Caumartin, L.; Bettachini, M.; Moro, M. 1981. Le pouvoir calorifique supérieur d’espèces forestières méditerranéennes. Annales des Sciences forestières 38(4): 469-486.

Duca, D.; Riva, G.; Foppa Pedretti, E.; Toscano, G. 2014. Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 135: 9-14.

Energy research Centre of the Netherlands. 2012. ECN Phyllis2 database for biomass and waste. [online] <https://www.ecn.nl/phyllis2> [cit. 06/08/2017].

ENplus. 2015. ENplus Handbook version 3.0. Brussels, Belgium: European Biomass Association AEBIOM,. 103 pp. [Available at] <http://www.enplus-pellets.eu/downloads/enplus-handbook/>.

European Pellet Council. 2011. Handbook for the Certification of Wood Pellets for Heating Purposes, based on EN 14961-2. Brussels, Belgium: European Pellet Council. 33 pp. [Available at] <http://www.pelletcouncil.eu/cms/wp-content/uploads/2011/02/ENplus-handbook-3.5.11.pdf>.

Ferro, M.D.; Fernandes, M.C.; Paulino, A.F.C.; Prozil, S.O.; Gravitis, J.; Evtuguin, D.V.; Xavier, A.M.R.B. 2015. Bioethanol production from steam explosion pretreated and alkali extracted Cistus ladanifer (rockrose). Biochemical Engineering Journal 104: 98-105.

García Rosa, M. 2013. Estudio de la biomasa de Cistus ladanifer L. y Retama sphaerocarpa L. como sumidero de CO2: existencias y potencialidad. PhD Thesis. Badajoz, Spain. Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura. 230 pp.

International Organization for Standardization. 2014. 17225-2:2014 Solid biofuels, Fuel specifications and classes. Part 2: Graded wood pellets. Geneva, Switzerland: International Organization for Standardization. 9 pp. [Available at] <http://www.iso.org/iso/catalogue_detail?csnumber=59457>.

International Organization for Standardization. 2015. 18122:2015, Solid biofuels, Determination of ash content. Geneva, Switzerland: International Organization for Standardization. 6 pp. [Available at] <http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61515>.

Kienzle, E.; Schrag, I.; Butterwick, R.; Opitz, B. 2001. Calculation of gross energy in pet foods: new data on heat combustion and fibre analysis in a selection of foods for dogs and cats. Journal of Animal Physiology and Animal Nutrition 85(5-6): 148-157.

Marques, E.; Paiva, J.M.; Pinho, C. 2011. The new Portuguese energy challenge? Pellets from shrubs. In Proceedings of the 21st Brazilian Congress of Mechanical Engineering, October 24-28, 2011. Natal, RN, Brazil. pp. 12.

Martínez, J.M.; Varela, M.; Escalada, R.; Murillo, J.M.; González, E.; Carrasco, J.; Manzanares, P. 2000. Combustion assays of brushwood (Cistus ladanifer) biomass in a BAFB pilot plant. In Proceedings of the 1st World Conference on Biomass for Energy and Industry, June 5-9, 2000. Sevilla, Spain. pp. 1987-1990.

Mello, A.A.d.; Nutto, L.; Weber, K.S.; Sanquetta, C.E.; Matos, J.L.M.d.; Becker, G. 2012. Individual biomass and carbon equations for Mimosa scabrella Benth. (Bracatinga) in Southern Brazil. Silva Fennica 46(3): 333-343.

Miranda, I.; Mirra, I.; Gominho, J.; Pereira, H. 2017. Fractioning of bark of Pinus pinea by milling and chemical characterization of the different fractions. Maderas. Ciencia y tecnología 19(2): 185-194.

PerkinElmer. 2014. Pyris - Instrument Managing Software, Version 11. Waltham, MA, USA: PerkinElmer, Inc.

Ruiz-Peinado, R.; Montero, G.; Del Rio, M. 2012. Biomass models to estimate carbon stocks for hardwood tree species. Forest Systems 21(1): 42-52.

Talwalkar, A.T.; United, S.; Department of, E.; Institute of Gas, T. 1981. IGT/DOE coalconversion systems technical data book, Chicago, IL, USA. Institute of Gas Technology. 23 pp.

Tihay, V.; Santoni, P.-A.; Simeoni, A.; Garo, J.-P.; Vantelon, J.-P. 2009. Skeletal and global mechanisms for the combustion of gases released by crushed forest fuels. Combustion and Flame 156(8): 1565-1575.

Valares Masa, C.; Sosa Díaz, T.; Alías Gallego, J.; Chaves Lobón, N. 2016. Quantitative variation of flavonoids and diterpenes in leaves and stems of Cistus ladanifer L. at different ages. Molecules 21(3): 275-288.

Wang, F.; Hu, L.J.; Zheng, Y.W.; Huang, Y.B.; Yang, X.Q.; Liu, C.; Kang, J.; Zheng, Z.F. 2016. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review. IOP Conference Series: Earth and Environmental Science 40: 012047.

Zabaniotou, A.A.; Roussos, A.I.; Koroneos, C.J. 2000. A laboratory study of cotton gin waste pyrolysis. Journal of Analytical and Applied Pyrolysis 56(1): 47-59.

Downloads

Published

2017-10-01

How to Cite

Carrión-Prieto, P., Martín-Ramos, P., Hernández-Navarro, S., F. Sánchez-Sastre, L., L. Marcos-Robles, J., & Martín-Gil, J. (2017). Valorization of Cistus ladanifer and Erica arborea shrubs for fuel: Wood and bark thermal characterization. Maderas-Cienc Tecnol, 19(4), 443–454. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/2979

Issue

Section

Article

Most read articles by the same author(s)