The wettability and surface free energy of sawn, sliced and sanded european oak wood

  • Agnieszka Jankowska
  • Marcin Zbieć
  • Paweł Kozakiewicz
  • Grzegorz Koczan
  • Sylwia Oleńska
  • Piotr Beer
Keywords: Contact angles, Quercus robur, sawing, surface roughness, wood machining


The main objective of this work was to evaluate the effects of two machining processes on European oak wood surface characteristics. The relationships between wettability, free surface energy and machining methods were studied. Sawing and slicing, with or without sanding, were used to prepare surfaces prior to testing whether they produce surfaces with different characteristics. For the wood surfaces machined by slicing and sawing, there was a significant difference in contact angle measurements. This indicates that the influence of machining processes such as slicing and sawing on contact angle value is remarkable. Sanded surfaces showed good wettability and high process roughness.


AGUILERA, A.; MUÑOZ, H. 2011. Rugosidad superficial y potencia de corte en el cepillado de Acacia melanoxylon y Sequoia sempervirens. Maderas-Cienc Tecnol 13 (1): 19-28.
AGUILERA, A.; ZAMORA, R. 2009. Surface roughness in sapwood and heartwood of Blackwood (Acacia melanoxylon R. Br.) machined in 90-0 direction. European Journal of Wood Products 67: 297-301.

AMORIM M. R. S.; RIBEIRO P. G.; MARTINS S. A.; DEL MENEZZI C. H. S.; SOUZA M. R. 2013. Surface Wettability and Roughness of 11 Amazonian Tropical Hardwoods. Floresta e Ambiente 20 (1): 99-109.

ARNOLD M. 2010. Planing and Sanding of Wood Surfaces - Effects on Surface Properties and Coating Performance. In: Proceedings PRA's 7th International Woodcoatings Congress; Middlesex: Hampton.

DE MEIJER M.; THURICH K.; MILITZ H. 1998. Comparative study on penetration characteristics of modern wood coatings. Wood Science and Technology 32 (5): 347-365.

DIN 4768:1990. Determination of values of surface roughness parameters Ra. Rz, Rmax using electrical contact (stylus) instruments concepts and measuring conditions.

EL ABED, S.; IBNSOUDA, K. S.; LATRACHE, H.; BOUTAHARI, S. 2011. Theoretical effect of cedar wood surface roughness on the adhesion of conidia from Penicillium expansum. Annals of Microbiology 62 (4): 1361-1366. DOI: 10.1007/s13213-011-0384-5

GARDNER, D. J.; GENERALLA, N. C.; GUNNELLS, D. W.; WOLCOTT, M. P. 1991. Dynamic wettability of wood. Langmuir 7 (11): 2498–2502. DOI: 10.1021/la00059a017

GARNIER, G.; GLASSER, W. G. 1996. Measuring the surface energies of spherical cellulose beads by inverse gas chromatography. Polymers Engineering and Science 36 (6): 885-894.

GINDL, M.; SINN, G.; REITERER, A.; TSCHEGG ,S. 2001. Wood Surface Energy and Time Dependence of Wettability:A Comparison of Different Wood Surfaces Using an Acid-BaseApproach. Holzforschung 55: 433–440.

GINDL, W.; SCHOBERL, T.; JERONIMIDIS, G. 2004. The interphase in phenol-formaldehyde and polymeric methylene diphenyl-di-isocyanate glue lines in wood. International Journal Adhesion Adhesives 24 (4): 279-286.

GURAU, L.; MANSFIELD-WILLIAMS, H. IRLE, M. 2005. The influence of wood anatomy on evaluating the roughness of sanded solid wood. Journal of Institute of Wood Science 17 (2): 65-74. DOI 10.1179/wsc.2005.17.2.65

KILIC, M.; HIZIROGLU, S.; BURDURLU, E. 2006. Effect of machining on surface roughness of wood. Building and Environment 41: 1074-1078.

KWOK, D. Y.; NEUMANN, A. W. 2000. Contact angle measurements and contact angle interpretation: relevance to the thermodynamics of adhesion. In Acid-base interactions: relevance to adhesion science and technology, vol. II. Utrecht, Holland. Pp. 91–166.

LEMASTER, R.; DORNFELD, D. 1982. Measurement of surface quality of sawn and planed surfaces with a laser. Paper presented in the Seventh Wood Machining Seminar. October 18– 20, University of California, Forest Products Laboratory, Richmond, CA, pp 54–61.

LIPTÁKOVÁ, E.; KÚDELA, J. 1994. Analysis of the wood-wetting process. Holzforschung 48 (2): 139-144.

MITCHELL, P.; LEMASTER, R. 2002. Investigation of machine parameters on the surface quality in routing soft maple. Forest Products Journal 52 (6): 85-90.

PETRIČ, B.; OVEN, P. 2015. Determination of wettability of wood and its significance in wood science and technology: a critical review. Reviews and adhesion and adhesives 3 (2): 121-187. DOI: 10.7569/RAA.2015.097304

PN-EN 1316-1:2013-04 Hardwood round timber. Qualitative classification. Oak and beech.

QIN, Z., HUI, C., QIANG, G., SHIFENG, Z., JIANZHANG, L. 2015. Wettability of Sanded and Aged Fast-growing Poplar Wood Surfaces: I. Surface Free Energy. BioResources 9 (4): 7176-7188. DOI: 10.15376/biores.9.4.7176-7188

QIN, Z.; GAO, Q.; ZHANG, S.; LI J. 2014. Surface Free Energy and Dynamic Wettability of Differently Machined Poplar Woods. BioResources 9 (2): 3088-3103. DOI: 10.15376/biores.9.2.3088-3103

SHUPE, T.F.; HSE, C.Y.; WANG, W.H. 2001. An investigation of selected factors that influence hardwood wettability. Holzforschung 55 (5): 541-548. DOI: 10.1515/HF.2001.087

THOMA, H.; PERI, L.; LATO, E. 2015. Evaluation of wood surface roughness depending on species characteristics. Maderas-Cienc Tecnol 17 (2): 285-292. DOI: 10.4067/S0718-221X2015005000027

UGULINO B.; HERNÁNDEZ R. E. 2015. Effects of four surfacing methods on surface properties and coating performance of red oak wood. Proceedings of the 22nd International Wood Machining Seminar June 14-17, 2015 Quebec City, Canada

VAN OSS, C. J.; GOOD, R. J.; CHAUDHURY, M. K. 1998. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4 (4), 884-891. DOI: 10.1021/la00082a018

ZISMAN, W. A. 1963. Influence of constitution on adhesion. Industrial & Engineering Chemistry 55 (10): 18–38. DOI: 10.1021/ie50646a003
How to Cite
Jankowska, A., Zbieć, M., Kozakiewicz, P., Koczan, G., Oleńska, S., & Beer, P. (2018). The wettability and surface free energy of sawn, sliced and sanded european oak wood. Maderas. Ciencia Y Tecnología, 20(4). Retrieved from