Prediction of microfibril angle for Eucalyptus microcorys wood by fiber length and basic density

Authors

  • Luiz Eduardo de Lima Melo
  • Selma Lopes Goulart
  • Bárbara Maria Ribeiro Guimarães
  • Rosalvo Maciel Guimarães Neto
  • Caroline Junqueira Sartori
  • José Tarcísio Lima

Keywords:

Eucalypt, fiber morphology, microfibril slope, specific gravity, wood variation

Abstract

Aim of the study was to estimate the influence of the fiber length and basic density on microfibril angle of Eucalyptus microcorys wood. The study area was in an experimental planting at the Universidade Federal de Lavras, Minas Gerais State, Brazil. Three 37 year-old Eucalyptus microcorys trees were used, from whose stems six centimeter-thick discs were removed, cut at a high of three meters. The disks were sanded and planed to highlight the growth rings. Specimens were taken every 1.5 cm across the radius from pith to bark for determining microfibril angle, fiber length and wood basic density. The microfibril angles were determined by use of polarized light microscopy, while the fiber morphology and basic density were determined by usual methods. The averages found for microfibril angle (12.6°), fiber length (968 µm) and basic density (480 kg.m-3) are, in general, within the range of values reported for these characteristics of wood. The microfibril angle showed accentuated reduction of the average values in the pith-bark direction. The fiber length and basic density showed the opposite behavior. We observed that the density and fiber length may be used as an microfibril angle predictor, accounting for 96% and 79% of its variation, respectively.

Downloads

Download data is not yet available.

References

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. 2003. NBR 11941: Madeira - determinação da densidade básica. Rio de Janeiro, 6 p.

Bamber, R. K. 1985. The wood anatomy of eucalypts and papermaking. Appita Journal 38(3): 210 16.

Barnett, J. R.; Bonha, V. A. 2004. Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews 79(2): 461-472.

Berlyn, G. P.; Miksche, J. P. 1976. Botanical microtechnique and cytochemistry. New Phytologist 78: 245-255.

Bhat, K. M.; Dhamodaran, T. K. 1990. Wood density and fiber length of Eucalyptus grandis grown in Kerala, India. Wood and Fiber Science 22(1): 54–61.

Bonham, V. A.; Barnett, J.R. 2001. Fibre length and microfibril angle in silver birch (Betula pendula Roth). Holzforschung 55(2): 159–162.

Booker, R. E. The importance of the S3 cell wall layer in collapse prevention and wood hardness. In: FOREST PRODUCTS RESEARCH CONFERENCE, 24., 1993, Clayton, Australia. Anais… Clayton, Australia: CSIRO, 1993, 1- 13.

Boyd, J. D. 1980. Relationships between fibre morphology, growth strains and physical properties of wood. Australian Forest Research 10(4): 337–360.

Boyd, J. D. 1985. Biophysical control of microfibril orientation in plant cell walls: aquatic and terrestrial plants including trees. M. Nijhoff/W. Junk, Hingham, Massachusetts, USA.

Bukatsch, F. 1972. Bemerkungen zur doppelfãrbung astrablau-safranin. Mikrokosmos 61(8): 33-36.

Chauhan, S., Donnelly, R., Huang, C. L., Nakada, R., Yafang, Y., and Walker, J. 2006. Wood quality: multifaceted opportunities, in: Primary wood processing: principles and practice. Walker J Trees (ed) 2nd edn. Springer, Dordrecht, pp. 159-202.

Donaldson, L. A. 1996. Effect of physiological age and site on microfibril angle in Pinus radiate. IAWA Journal 17(4): 421-429.

Donaldson, L. 2008. Microfibril angle: measurement, variation and relationships - a review. IAWA Journal 29(4): 345-386.

Emons, A. M. C.; Mulder, M. 2000. How the deposition of cellulose microfibrils builds cell wall architecture. Trends in Plant Science 5(1), 35-40.

Estanislau, A. A.; Barros, F. A. S.; Pena, A. P.; Santos, S. C.; Ferri, P. H.; Paula, J. R. 2001. Composição química e atividade antibacteriana dos óleos essenciais de cinco espécies de Eucalyptus cultivadas em Goiás. Rev Bras Farmacognosia 11: 95-100.

Evans, R.; Stringer, S.; Kibblewhite, R. P. 2000. Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita Journal 53(5): 450–457.

Fengel, D.; Wegener, G. 1984. Wood - chemistry, ultrastructure, reactions, Walter de Gruyter, Berlin and New York.

Foudil-Cherif, Y.; Meklati, B. Y.; Verzera, A.; Mondello, L.; Dugo, G. 2000. Chemical examination of essential oils from the leaves of nine Eucalyptus species growing in Algeria. J Essential Oil Res 12:186-191.

Franklin, G. L. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155(3924): 51-51.

Goes, E. 1960. Eucalyptus microcorys F. v. M. In: Os eucalyptos em Portugal: identificação e monografia de 90 espécies. Lisboa: Secretaria de Estado da Agricultura, 1, 198-200.

Goulart, S. L. ; Arriel, T. G. ; Resende, S. S. S. ; Silva, J. R. M ; Lima, J. T.; Hein, P.R. G . 2015. Wood stiffness of Corymbia and Eucalyptus species. In: II CONGRESSO BRASILEIRO DE CIÊNCIA E TECNOLOGIA DA MADEIRA, 2015, Belo Horizonte. ANAIS DO II CONGRESSO BRASILEIRO DE CIÊNCIA E TECNOLOGIA DA MADEIRA. Lavras: SBCTEM, v. 1. p. 1-10.

Grace, J.K.; Ewart, D.M.; Tome, C.H.M. 1996. Termite resistance of wood species grown in Hawaii. Forest Products Journal 46(10): 57-60.

Hein, P. R. G.; Brancheriau, L. 2011. Radial variation of microfibril angle and wood density and their relationships in 14-year-old Eucalyptus urophylla S.T. Blake wood. Bioresources 6(3): 3352-3362.

Hein, P. R. G.; Chaix, G.; Clair, B.; Brancheriau, L.; Grill, J. 2015. Spatial variation of wood density, stiffness and microfibril angle along Eucalyptus trunks grown under contrasting growth conditions. Trees 29(1): 1-12.

Hirohashi, A., Kojima, M., Yoshida, M., Yamamoto, H., Watanabe, Y., Inoue, H., and Komoda, S. 2012. Wood Properties of 6 Fast-growing Eucalyptus Species Grown in Japan. Mokuzai Gakkaishi 58(6): 339-346.

International Association of Wood Anatomists Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bulletin 10(3): 219-332.

Ochoa-Quintero, J. M.; Gardner, T. A.; Rosa, I., Ferraz, S. F. B.; Sutherland, W. J. 2014. Threshold of species loss in Amazonian deforestation frontier landscapes. Conservation Biology 29(2): 440-451.

Kraus, J. E.; Ardui, M. 1997. Manual básico de métodos em morfologia vegetal, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro.

Lachenbruch, B.; McCulloh, K. A. 2014. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist Tansley Review 204: 747-764.

Lima, J. T.; Breese, M. C.; Cahalan, C. M. 2004. Variation in microfibril angle in Eucalyptus clones. Holzforshung 58(2): 160-166.

Lima, J. T.; Ribeiro, A. O.; Narciso, C. R. P. 2014. Microfibril angle of Eucalyptus grandis wood in relation to the cambial age. Maderas-Cienc Tecnol 16(4): 487-494.
Leney, L. 1981. A technique for measuring fibril angle using polarized light. Wood and Fiber Science 13(1): 13-16.

Magno, L. F.; Magrach, A.; Laurance, S. V. M.; Meira-Neto, J. A. A.; Simonelli, M.; Edwards, D. P. 2015. Would pretecting tropical Forest fragments tropical fragments provide carbon and biodiversity cobenefits under REDD+?. Global Change Biology 21: 3455-3468.

Martins, M.; Silva, J.R.M, Lima, J.T., Gonçalves, M.T.T.; Filipe, A.P. 2013. Simulação em uso dos pisos de madeira de Eucalyptus sp e Corymbia maculata. Cerne 19(1): 151-156.

Matsumura, J.; Butterfield, B. G. 2001. Microfibril angles in the root wood of Pinus radiata and Pinus nigra. IAWA Journal 22(1): 57–62.

Medhurst, J.; Downes, G.; Ottenschlaeger, M.; Harwood, C.; Evans, R.; Beadle, C. 2012. Intra-specific competition and the radial development of Wood density, microfibril angle and modulus of elasticity. Trees 26(6): 1771-1780.

Mellerowicz, E.; Baucher, M.; Sundberg, B.; Boerjan, W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology 47(1-2): 239-74.

Melo, L. E. L.; Silva, J. R. M.; Napoli, A.; Lima, J. T. L.; Trugilho, P. F.; Nascimento, D. F. R. 2016. Influence of genetic material and radial position on the anatomical structure and basic density of wood from Eucalyptus spp. and Corymbia citriodora. Sci For 44(111): 611-621.

Meylan, B. A.; Probine, M. C. 1969. Microfibril angle as a parameter in timber quality assessment. Forest Products Journal 19(4): 30–34.

Mott, L.; Groom, L.; Shaler, D. S. 2002. Mechanical properties of individual southern pine fibers. Part II. Comparison of earlywood and latewood fibers with respect to tree height and juvenility. Wood and Fiber Science 34(2): 221–237.

Navi, P.; Rastogi, P. K; Gresse, V; Tolou, A. 1995. Micromechanics of wood subjected to axial tension. Wood Science and Technology 29(6): 411-429.

Neves, W. A. A. 2004. Chave de identificação de espécies florestais (CIEF): Eucalyptus microcorys F. Muell. Piracicaba: IPEF. Disponível em: Acesso em: 4 nov. 2017.

Palermo, G. P. M.; Latorraca, J. V. F.; Carvalho, A. M.; Colonego, F. W.; Severo, E. T. D. 2015. Anatomical properties of Eucalyptus grandis wood and transition age between the juvenile and mature woods. European Journal of Wood and Wood Products 73(4): 423 -562.

Pires, J.V. 2010. Avaliação de características dendrométricas de eucalipto não manejado. 60 p. Monography (Forest engineering). Universidade Federal de Lavras. Lavras.

Plomion, C.; Leprovost, G.; Stokes, A. 2001. Wood formation in trees. Plant Physiology 127(4): 1513-1523.

Preston, R. D. 1974. The Physical Biology of Plant Cell Walls. Chapman & Hall, London.

Ramos, L. M. A.; Latorraca, J. V. F.; Pastro, M. S.; Souza, M. T.; Garcia, R. A.; Carvalho, A. M. 2011. Variação radial dos caracteres anatômicos da madeira de Eucalyptus grandis W. Hill Ex Maiden e idade de transição entre lenho juvenil e adulto. Scientia Forestalis 39: 411-418.

Stuart, S. A.; Evans, R. 1995. X-ray diffraction estimation of the microfibril angle variation in Eucalyptus wood. Appita Journal 48(3): 197-200.

Tomazello-Filho, M. 1985. Variação radial da densidade básica e da estrutura anatômica da madeira de Eucalyptus gummifera, E. microcorys e E. pilulares. IPEF 29: 37-45.

Tomazello-Filho M. 1987. Variação radial da densidade básica e da estrutura anatômica da madeira de Eucalyptus globulus, E. pellita e E. acmenioides. IPEF 36: 35-42.

Wilkes, J. 1988. Variations in wood anatomy within species of Eucalyptus. Iawa Bulletin 9(1): 13-23.

Wilkes, J.; Abbott, D. 1983. Influence of the rate of tree growth on the anatomy of eucalypt species”. Appita Journal 37(3): 231-232.

Yang, J. L.; Evans, R. 2003. Prediction of MOE of eucalypt wood from microfibril angle and density. European Journal of Wood and Wood Products 61(6): 449–452.

Zobel, B. J.; Van Buijtenen, J. P. 1989. Wood variation: its causes and control. Springer, New York.

Downloads

Published

2018-10-01

How to Cite

Eduardo de Lima Melo, L., Lopes Goulart, S., Maria Ribeiro Guimarães, B., Maciel Guimarães Neto, R., Junqueira Sartori, C., & Tarcísio Lima, J. (2018). Prediction of microfibril angle for Eucalyptus microcorys wood by fiber length and basic density. Maderas-Cienc Tecnol, 20(4), 553–562. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3204

Issue

Section

Article