Timber grading of Pinus uncinata, a lesser known pine species from the pyrenean mountain range

Authors

  • Agnès Burgers
  • Cédric Montero
  • Jordi Gené Sera
  • Marcel Vilches Casals
  • Eduard Correal Modol
  • Patrick Langbour
  • Bernard Thibaut

Keywords:

Clear-wood properties, modulus of elasticity, modulus of rupture, Mountain pine, variability

Abstract

Timber grading is an essential step into the value process to determine wood usability for structural uses. It requires well-described characteristics obtained easily by taking non-destructive measurements to quantify reliable indicators of mechanical properties. In this paper we present an approach based on both timber scale and clear-wood scale measurements using the case of Mountain pine (Pinus uncinata). An important experimental plan have been performed from collected trees of French and Spain Pyrenean regions allowing significantly the use of inter-correlations between measurements. The physical properties of clear wood present an important adaptation of tree growth condition with a lower modulus of elasticity as a consequence of microstructure at cell-wall level but a conventional modulus or rupture in bending for pines. However, the results on timber presents an important the difference between visual and machine grading for this species in view of mechanical properties considered. The results obtained also show possible improvement and limitations of current regulation in the grading mountain pine timber for structural use.

Downloads

Download data is not yet available.

References

Abe, H.; Funada, R.2005. Review - The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA J 26 (2): 161-174.

Brancheriau, L.; Baillères, H. 2002. Natural vibration analysis of clear wooden beams: a theoretical review. Wood Sci Technol 36 (4): 347-365.

Brown, C. 2000. The global outlook for future wood supply from forest plantations. Global Forest Products Outlook Study, Working Paper n.3, Food and Agriculture Organization of the United Nations (FAO), 1-156.

Carson, S.D.; Cown, D.J.; Mckinley, R.B.; Moore, J.R. 2014. Effects of site, silviculture and seedlot on wood density and estimated wood stiffness in radiata pine at mid-rotation. New Zealand J For Sci 44 (1): 26.

Cave, I.D. 1968. The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2 (4) : 268-278.

Choong, E.T. 1969. Effect of extractives on shrinkage and other hygroscopic properties of ten southern pine woods. Wood Fiber Sci 1 (2): 124-133.

Donaldson, L.; Xu, P. 2005. Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees 19 (6): 644-653.

Dumail, J.F.; Castéra, P.; Morlier, P. 1998. Hardness and basic density variation in the juvenile wood of maritime pine. Ann For Sci 55 (8): 911-923.

Freyburger, C.; Longuetaud, F. Mothe, F.; Constant, T.; Leban, J.M. 2009. Measuring wood density by means of X-ray computer tomography. Ann For Sci 66 (8) :804-804.

FR-IFN-66-3. 1994. Inventaire forestier national, Département des Pyrénées Orientales : résultats du troisième inventaire forestier (1989-1990). Ministère de l’Agriculture et de la Pêche. France.

Glass, S.V.; Zelinka, S.L. 2010. Moisture relations and physical properties of wood (chapter 4), in: Wood Handbook, Wood as an Engineering Material. Forest Products Laboratory. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: 508 p. 2010

Hanhijärvi, A.; Ranta-Maunus, A.; Turk, G. 2005. Potential of strength grading of timber with combined measurement techniques. VTT Publications 568. Report of the Combigrade-project - Phase 1.

Harris, J.M.; Meylan, B.A. 1965. The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung 19 (5): 144-153.

Heuertz, M.; Teufel, J.; González-Martínez, S.C.; Soto, A.; Fady, B.; Alía, R.; Vendramin, G.G. 2010. Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. J Biogeogr 37 (3): 541-556.

Ivković, M.; Gapare, W.J.; Abarquez, A.; Ilic, J.; Powell, M.B.; Wu, H.X. 2008. Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Sci Technol 43 (3): 237-242.

Kang, K.Y.; Zhang, S.Y.; Mansfield, S.D. 2005. The effects of initial spacing on wood density, fibre and pulp properties in jack pine (Pinus banksiana Lamb.). Holzforschung 58 (5): 455-463.

Koch, P. 1972. Utilization of the Southern Pines. Agriculture Handbook n.420. Volume 1., Unites State Department of Agriculture Forest Service: USA, p. 1-744

Kretschmann, D.E. 2010. Mechanical properties of wood (chapter 5), in: Wood Handbook, Wood as an Engineering Material. Forest Products Laboratory. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory : 508 p. 2010.

Lachenbruch, B.; Moore, J.R.; Evans, R. 2011. Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for its Occurrence, inMeinzer, F.C.; Lachenbruch, B.; Dawson, T.E. (Eds.). , Size- and Age-Related Changes in Tree Structure and Function. Springer Netherlands : Dordrecht, pp. 121-164.

Mazet, J.F.; Nepveu, G. 1991. Relations entre caractéristiques de retrait et densité du bois chez le pin sylvestre, le sapin pectiné et l’épicéa commun. Ann For Sci 48 (1) : 87-100.

Moore, J.R.; Cown, D.J.; Mckinley, R.B.; Sabatia, C.O. 2015. Effects of stand density and seedlot on three wood properties of young radiata pine grown at a dry-land site in New Zealand. New Zealand J For Sci 45 (4): 1-15.

Moya, L.; Cardoso, A.; Cagno, M.; O´Neill, H. 2015. Structural characterization of pine lumber from Uruguay. Maderas-Cienc Tecnol 17 (3): 597-612.

Neagu, R.C.; Gamstedt, E.K. 2007. Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres. J Mater Sci 42 (24) : 10254-10274.

NF. 2011. Règles d’utilisation du bois dans la construction - Classement visuel pour l’emploi en structures des bois sciés français résineux et feuillus - Partie 1 : bois massif. NF B 52-001-1-2011.

NF EN. 2016. Bois de structure - Classes de résistance. NF EN-338. 2016

NF EN. 2016. Bois de structure - Détermination des valeurs caractéristiques des propriétés mécaniques et de la masse volumique. NF EN-384. 2016.

NF EN. 2010. Structures en bois - Bois de structure et bois lamellé-collé - Détermination de certaines propriétés physiques et mécaniques. NF EN-408. 2010.

NF. 1985. Bois - Essai de compression axiale. NF B51-007. 1985.

Nocetti, M.; Bacher, M.; Brunetti, M.; Crivellaro, A.; Van De Kuilen, J.W.G. 2010. Machine grading of Italian structural timber: preliminary results on different wood species, in: Proceedings of the World Conference on Timber Enginnering (WCTE).

Pang, S. 2002. Predicting anisotropic shrinkage of softwood. Part 1: Theories. Wood Sci Technol 36 (1): 75-91.

Riesco-Muñoz, G.; Soilán-Cañas, M.A.; Roíguez-Soalleiro, R. 2008. Physical properties of wood in thinned Scots pines (Pinus sylvestris L.) from plantations in northern Spain. Ann For Sci 65 (5): 507-507.

Riou-Nivert, P. 2015. Les résineux, tome 3 : bois, utilisation, économie. CNPF, Institut pour le Développement Forestier (IDF) : France.

Roth, B.E.; Li, X.; Huber, D.A.; Peter, G.F. 2007. Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the southeastern USA. For Ecol Manag 246 (2): 155-162.

Srpčič, S.; Srpčič, J.; Saje, M.; Turk, G. 2009. Mechanical analysis of glulam beams exposed to changing humidity. Wood Sci Technol 43 (1-2): 9-22.

Telewski, F.W. 1989. Structure and function of flexure wood in Abies fraseri. Tree Physiol 5 (1): 113-121.

Van Den Bulcke, J.; Boone, M.; Van Acker, J.; Stevens, M.; Van Hoorebeke, L. 2009. X-ray tomography as a tool for detailed anatomical analysis. Ann For Sci 66 (5): 508.

Watt, M.S.; Downes, G.M.; Whitehead, D.; Mason, E.G.; Richardson, B.; Grace, J.C.; Moore, J.R. 2005. Wood properties of juvenile Pinus radiata growing in the presence and absence of competing understorey vegetation at a dryland site. Trees 19 (5): 580-586.

Yamamoto, H.; Sassus, F.; Ninomiya, M.; Gril, J. 2001. A model of anisotropic swelling and shrinking process of wood. Part 2. A simulation of shrinking wood. Wood Sci Technol 35 (1-2): 167-181.

Zhang, S.Y. 1995. Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29 (6): 451-456

Downloads

Published

2019-04-01

How to Cite

Burgers, A., Montero, C., Gené Sera, J., Vilches Casals, M., Correal Modol, E., Langbour, P., & Thibaut, B. (2019). Timber grading of Pinus uncinata, a lesser known pine species from the pyrenean mountain range. Maderas-Cienc Tecnol, 21(2), 261–276. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3434

Issue

Section

Article